ST13 is a cofactor of heat shock protein 70 (Hsp70). To date, all data since the discovery of ST13 in 1993 until more recent studies in 2007 have proved that ST13 is downregulated in tumors and it was proposed to be a tumor suppressor gene, but no work reported its antitumor effect and apoptotic mechanism. In the work described in this paper, ST13 was inserted into ZD55, an oncolytic adenovirus with the E1B 55-kDa gene deleted, to form ZD55-ST13, which exerts an excellent antitumor effect in vitro and in an animal model of colorectal carcinoma SW620 xenograft. ZD55-ST13 inhibited tumor cells 100-fold more than Ad-ST13 and ZD55-EGFP in vitro. However, ZD55-ST13 showed no damage of normal fibroblast MRC5 cells. In exploring the mechanism of ZD55-ST13 in tumor cell killing, we found that ZD55-ST13-infected SW620 cells formed apoptotic bodies and presented obvious apoptosis phenomena. ZD55-ST13 induced the upregulation of Hsp70, the downregulation of antiapoptotic gene Bcl-2, and the release of cytochrome c. Cytochrome c triggered apoptosis by activating caspase-9 and caspase-3, which cleave the enzyme poly(ADP-ribose) polymerase in ZD55-ST13-infected SW620 cells. In summary, overexpressed ST13 as mediated by oncolytic adenovirus could exert potent antitumor activity via the intrinsic apoptotic pathway and has the potential to become a novel therapeutic for colorectal cancer gene therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1089/hum.2007.0137DOI Listing

Publication Analysis

Top Keywords

oncolytic adenovirus
12
potent antitumor
8
colorectal cancer
8
mediated oncolytic
8
zd55-st13-infected sw620
8
sw620 cells
8
st13
6
zd55-st13
5
antitumor efficacy
4
efficacy st13
4

Similar Publications

Adenovirus-based therapies have encountered significant challenges due to host immunity, particularly from pre-existing antibodies. Many trials have struggled to evade antibody response; however, the efficiency of these efforts was limited by the diversity of antibody Fv-region recognizing multiple amino acid sequences. In this study, we developed an antibody-evading adenovirus vector by encoding a plasma-rich protein transferrin-binding domain.

View Article and Find Full Text PDF

Background: Despite significant advancements in the treatment of malignant melanoma, metastatic mucosal melanoma remains a therapeutic challenge due to its complex pathogenesis, distinct pathological characteristics, and limited response to immunotherapy. Combining different immunotherapeutic approaches offers a potential strategy to address these challenges. Tumor-infiltrating lymphocyte (TIL) therapy and oncolytic virus therapy represent promising treatment modalities that may synergize with each other.

View Article and Find Full Text PDF

Oncolytic viruses expressing MATEs facilitate target-independent T-cell activation in tumors.

EMBO Mol Med

January 2025

Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.

Oncolytic viruses (OV) expressing bispecific T-cell engagers (BiTEs) are promising tools for tumor immunotherapy but the range of target tumors is limited. To facilitate effective T-cell stimulation with broad-range applicability, we established membrane-associated T-cell engagers (MATEs) harboring the protein transduction domain of the HIV-Tat protein to achieve non-selective binding to target cells. In vitro, MATEs effectively activated murine T cells and improved killing of MC38 colon carcinoma cells.

View Article and Find Full Text PDF

Introduction: Approximately 75% of bladder cancer cases are non-muscle invasive at diagnosis. Drug development for non-muscle invasive bladder cancer (NMIBC) has historically lagged behind that of other malignancies. No treatment has demonstrated the ability to overcome drug resistance that ultimately leads to recurrence and progression.

View Article and Find Full Text PDF

Oncolytic viruses (OVs) are a promising therapeutic approach for cancer, although their systemic administration faces significant challenges. Mesenchymal stem cells have emerged as potential carriers to overcome these obstacles due to their tumor-tropic properties. This study investigates the use of menstrual blood-derived mesenchymal stem cells (MenSCs) as carriers for OVs in cancer therapy, focusing on enhancing their efficacy through different culture conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!