Fc receptors for IgG (FcgammaR) have been implicated in the development of arthritis. However, the precise contribution of the individual FcgammaR to joint pathology is unclear. In this study, the role of the different FcgammaR was assessed both in an active and in a passive mouse model of arthritis by analyzing disease development in double and triple knockout (KO) offspring from crosses of FcgammaRI KO, FcgammaRIII KO, FcgammaRI/III double KO, or FcR gamma-chain KO with the FcgammaRII KO on C57BL6 background, which is susceptible for collagen-induced arthritis (CIA). In the active CIA model, onset was significantly delayed in the absence of FcgammaRIII, whereas incidence and maximum severity were significantly decreased in FcgammaRI/II/III triple KO but not in FcgammaRII/III double KO and FcgammaRI/II double KO mice as compared with FcgammaRII KO animals. Remarkably, fully destructive CIA developed in FcgammaRI/II/III triple KO mice. In contrast, FcR gamma/FcgammaRII double KO mice were resistant to CIA. These findings were confirmed with the passive KRN serum-induced arthritis model. These results indicate that all activating FcgammaR play a role in the development of arthritis, mainly in the downstream effector phase. FcgammaRIII is critically required for early arthritis onset, and FcgammaRI can substantially contribute to arthritis pathology. Importantly, FcgammaRI and FcgammaRIII were together dispensable for the development of destructive arthritis but the FcR gamma-chain was not, suggesting a role for another FcR gamma-chain associated receptor, most likely FcgammaRIV. In addition, FcgammaRII plays a negative regulatory role in both the central and effector phase of arthritis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.180.7.5083 | DOI Listing |
MAbs
September 2024
mAbsolve Limited, Oxford, UK.
MAbs
September 2024
mAbsolve Limited, Oxford, UK.
Lancet Microbe
October 2024
Burnet Institute, Melbourne, VIC, Australia; Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia; Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia. Electronic address:
Background: The RTS,S malaria vaccine is currently recommended for children aged 5-6 months in regions with moderate-to-high Plasmodium falciparum transmission. However, vaccination only confers 55% efficacy over 12 months and wanes within 18 months. The immunological mechanisms of RTS,S-mediated immunity are poorly understood; therefore, we aimed to identify antibody response types associated with protection against malaria in children vaccinated with RTS,S.
View Article and Find Full Text PDFJ Proteome Res
March 2024
Translational Glycobiology Institute, Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States.
Fc γ-receptors (FcγRs) on leukocytes bind immunoglobulin G (IgG) immune complexes to mediate effector functions. Dysregulation of FcγR-mediated processes contributes to multiple inflammatory diseases, including rheumatoid arthritis, lupus, and immune thrombocytopenia. Critically, immunoregulatory -glycan modifications on both FcγRs and IgGs alter FcγR-IgG binding affinity.
View Article and Find Full Text PDFFront Immunol
December 2023
Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany.
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a serious bleeding condition mostly caused by the reaction between maternal anti-HPA-1a antibodies and fetal platelets. This reaction leads to Fc-dependent platelet phagocytosis. Although several serological methods have been developed to identify maternal antibodies, a reliable laboratory parameter as a prognostic tool for FNAIT severity is still lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!