TLR sense microbial infections, and control activation of immune responses. Dendritic cells, macrophages, and B lymphocytes express TLR and the TLR-signaling adaptor protein MyD88. The impact of TLR-activated B cells on T cell-mediated inflammation is unknown. In this study, we have used mice carrying B cell-restricted deficiencies in MyD88 or in distinct TLR to examine the impact of TLR-activated B cells on a T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis (EAE). We demonstrate that TLR-signaling in B cells suppresses inflammatory T cell responses (both Th1 and Th17), and stimulates recovery from EAE. Only certain TLR are required on B cells for resolution of EAE, and these are dispensable for disease initiation, indicating that a category of TLR agonists preferentially triggers a suppressive function in B cells and thereby limits autoimmune disease. The TLR agonists controlling the regulatory function of B cells are provided by components of Mycobacterium tuberculosis present in the adjuvant. Thus, MyD88 signaling in B cells antagonizes MyD88 signaling in other cells, which drives differentiation of Th17 cells and is required for induction of EAE. Altogether, our data indicate that B cells link recognition of microbial products via TLR to suppression of a T cell-mediated autoimmune disease.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.180.7.4763DOI Listing

Publication Analysis

Top Keywords

tlr-activated cells
12
autoimmune disease
12
cells
11
impact tlr-activated
8
cells cell-mediated
8
cell-mediated autoimmune
8
tlr agonists
8
function cells
8
myd88 signaling
8
signaling cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!