The mammalian target of rapamycin (mTOR) is a serine/threonine kinase involved in nutrient sensing and cell growth and is a validated target for oncology and immunosuppression. Two modes of direct small-molecule inhibition of mTOR activity are known: targeting of the kinase active site and a unique mode in which the small molecule rapamycin, in complex with FKBP12 (the 12-kDa FK506 binding protein), binds to the FRB (FKBP12/rapamycin binding) domain of mTOR and inhibits kinase activity through a poorly defined mechanism. To facilitate the study of these processes, the authors have expressed and purified a truncated version of mTOR that contains the FRB and kinase domains and have developed homogeneous fluorescence-based assays to study mTOR activity. They demonstrate the utility of these assays in studies of active site-directed and FRB domain-directed mTOR inhibition. The results suggest that these assays can replace traditional radiometric or Western blot-based assays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1087057108314609 | DOI Listing |
has been identified in human and mouse HD brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 that contributes to aggregate formation and neuronal dysfunction (Sathasivam et al., 2013). Detection of the HTT exon 1 protein (HTTex1p) has been accomplished with surrogate antibodies in fluorescence-based reporter assays (MSD, HTRF), and immunoprecipitation assays, in HD postmortem cerebellum and knock-in mice but direct detection by SDS-PAGE and western blot assay has been lacking.
View Article and Find Full Text PDFBio Protoc
January 2025
Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Riken, 2-1 Hirosawa, Wako Saitama, Japan.
Cytosolic peptide:-glycanase (PNGase/NGLY1 in mammals), an amidase classified under EC:3.5.1.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt. Electronic address:
Background: The current synthetic strategies for carbon dots (CDs) are usually time-consuming, rely on complicated processes, and need high temperatures and energy. Recent studies have successfully synthesized CDs at room temperature. Unfortunately, most CDs synthesized at room temperature are obtained under harsh reaction conditions, prepared using aromatic precursors, or need a long time to generate.
View Article and Find Full Text PDFMol Cells
January 2025
Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Institute of Systems Biology, Pusan National University, Busan 46241, Republic Korea. Electronic address:
Recent advancements in fluorescence-based biosensor technologies have enabled more precise and accurate Förster Resonance Energy Transfer (FRET) imaging within Agrobacterium-mediated plant transformation systems. However, the application of FRET imaging in plant tissues remains hindered by significant challenges, particularly the time-intensive process of generating transgenic lines and the complications arising from tissue autofluorescence. In contrast, protoplast-based FRET imaging offers a rapid and efficient platform for functional screening and analysis, making it an essential tool for plant research.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry and Material Engineering, Lyuliang University, Lyuliang, 033000, P. R. China.
Innovative double-emission carbon dots (DE-CDs) were synthesized via a one-step hydrothermal method using fennel and m-phenylenediamine (m-PD) as precursors. These DE-CDs exhibited dual emission wavelengths at 432 and 515 nm under different excitations, making them highly versatile for fluorescence-based applications. The fluorescence of the DE-CDs was efficiently quenched by tetracycline (TC) through the inner filter effect (IFE), allowing for the construction of a sensitive dual-response fluorescent sensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!