Analgesics such as morphine cause many side effects including addiction, but kappa-opioid receptor agonist can produce antinociception without morphine-like side effects. With the aim of developing new and potent analgesics with lower abuse potential, we studied the antinociceptive and physical dependent properties of a derivate of ICI-199441, an analogue of (-)U50,488H, named (2-(3,4-dichloro)-phenyl)-N-methyl-N-[(1S)-1-(2-isopropyl)-2-(1-(3-pyrrolinyl))ethyl] acetamides (LPK-26). LPK-26 showed a high affinity to kappa-opioid receptor with the Ki value of 0.64 nM and the low affinities to micro-opioid receptor and delta-opioid receptor with the Ki values of 1170 nM and >10,000 nM, respectively. It stimulated [(35)S]GTPgammaS binding to G-proteins with an EC50 value of 0.0094 nM. In vivo, LPK-26 was more potent than (-)U50,488H and morphine in analgesia, with the ED50 values of 0.049 mg/kg and 0.0084 mg/kg in hot plat and acetic acid writhing tests, respectively. Moreover, LPK-26 failed to induce physical dependence, but it could suppress naloxone-precipitated jumping in mice when given simultaneously with morphine. Taken together, our results show that LPK-26 is a novel selective kappa-opioid receptor agonist with highly potent antinociception effects and low physical dependence potential. It may be valuable for the development of analgesic and drug that can be used to reduce morphine-induced physical dependence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2008.02.028 | DOI Listing |
Front Mol Biosci
December 2024
Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates.
Hemorphins are short atypical opioid peptide fragments embedded in the β-chain of hemoglobin. They have received considerable attention recently due to their interaction with opioid receptors. The affinity of hemorphins to opioid receptors μ-opioid receptor (MOR), δ-opioid receptor (DOR), and κ-opioid receptor (KOR) has been well established.
View Article and Find Full Text PDFChem Biol Drug Des
December 2024
Department of Drug and Health Sciences, University of Catania, Catania, Italy.
Suitable structural modifications of the functional groups at N-substituent of (-)-cis-N-normetazocine nucleus modulate the affinity and activity profile of related ligands toward opioid receptors. Our research group has developed several compounds and the most interesting ligands, LP1 and LP2, exhibited a dual-target profile for mu-opioid receptor (MOR) and delta-opioid receptor (DOR). Recent structure-affinity relationship studies led to the discovery of novel LP2 analogs (compounds 1 and 2), which demonstrated high MOR affinity in the nanomolar range.
View Article and Find Full Text PDFPharmacol Biochem Behav
December 2024
Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Rutgers Addiction Research Center, Brain Health Institute, Rutgers Health, Piscataway, NJ, USA; School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia. Electronic address:
Medications to treat substance use disorders remain suboptimal or, in the case of stimulants and cannabis, non-existent. Many factors have contributed to this paucity, including the biological complexity of addiction, regulatory challenges, and a historical lack of enthusiasm among pharmaceutical companies to commit resources to this disease space. Despite these headwinds, the recent opioid crisis has highlighted the devastating consequences of SUDs for both individuals and society, stimulating urgent efforts to identify novel treatment approaches.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh.
Background: Schott and Hook.f. are two commonly found vegetable species of the genus , found mainly in the Asian region.
View Article and Find Full Text PDFNeuropharmacology
December 2024
Department of Experimental Medicine, Division of Pharmacology, Università della Campania "L. Vanvitelli", Naples, Italy.
Cannabidiol has been shown to ameliorate neuropathic pain and its affective components. Previous studies highlighted the pharmacological interaction between the CBD and opioid system, particularly the MOR, but the understanding of the interaction between CBD and kappa opioid receptor (KOR), physiologically stimulated by the endogenous opioid dynorphin, remains elusive. We assessed the pharmacological interactions between CBD and nor-BNI, a selective KOR antagonist in a rat neuropathic pain model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!