Accurate determination of elastic parameters for multicomponent membranes.

Phys Rev Lett

Physics of Life Processes, Leiden Institute of Physics, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands.

Published: February 2008

Heterogeneities in the cell membrane due to coexisting lipid phases have been conjectured to play a major functional role in cell signaling and membrane trafficking. Thereby the material properties of multiphase systems, such as the line tension and the bending moduli, are crucially involved in the kinetics and the asymptotic behavior of phase separation. In this Letter we present a combined analytical and experimental approach to determine the properties of phase-separated vesicle systems. First we develop an analytical model for the vesicle shape of weakly budded biphasic vesicles. Subsequently experimental data on vesicle shape and membrane fluctuations are taken and compared to the model. The parameters obtained set limits for the size and stability of nanodomains in the plasma membrane of living cells.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.100.088101DOI Listing

Publication Analysis

Top Keywords

vesicle shape
8
accurate determination
4
determination elastic
4
elastic parameters
4
parameters multicomponent
4
multicomponent membranes
4
membranes heterogeneities
4
heterogeneities cell
4
membrane
4
cell membrane
4

Similar Publications

Extracellular vesicles (EVs) have garnered attention in research for their potential as biochemical transporters and immune modulators, crucial for regulating the host immune system. The present study was conducted to isolate and characterize EVs from Gram negative bacteria (EVs) and investigate their proteomic profile and immune responses. Isolation of EVs was carried out using ultracentrifugation method.

View Article and Find Full Text PDF

In the realm of gene therapy, given the exceptional performance of native exosomes, researchers have redirected their innovative focus towards exosome-mimetic nanovesicles (EMNs); however, the current design of most EMNs relies heavily on native cells or their components, inevitably introducing inter-batch variability issues and posing significant challenges for quality control. To overcome the excessive reliance on native cellular components, this study adopts a unique approach by precisely mimicking the lipid composition of exosomes and innovatively incorporating histone components to recapitulate the gene transfer characteristics of exosomes. We selected sphingomyelin (SM), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), and cholesterol as the lipid components, and employed the double emulsion method to prepare biomimetic exosomes carrying histone A and PEDF-DNA plasmids (His-pDNA@EMNs).

View Article and Find Full Text PDF

Confinement Induces Morphological and Topological Transitions in Multivesicles.

ACS Nano

January 2025

Instituto de Histología y Embriología de Mendoza (IHEM)─Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina.

The study of self-assembly in confined spaces has gained significant attention among amphiphilic superstructures and colloidal design. The additional complexity introduced by interactions between contents and their containers, along with the effects of shape and lipid mixing, makes multivesicular bodies an interesting subject of study. Despite its promising applications in biomedicine, such as drug delivery and biomimetic materials, much remains unexplored.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) cells receive several stimuli from surrounding cells, such as B-cell receptor (BCR) stimulation, and can manipulate their microenvironment via extracellular vesicle (EV) release. Here, we investigated the small RNA content (microRNA and YRNA) of CLL-EVs from leukemic cells cultured with/without BCR stimulation. We highlight an increase of miR-155-5p, miR-146a-5p, and miR-132-3p in EVs and in cells after BCR stimulation ( < 0.

View Article and Find Full Text PDF

Hot shape transformation: the role of PSar dehydration in stomatocyte morphogenesis.

Beilstein J Org Chem

January 2025

Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.

Polysarcosine emerges as a promising alternative to polyethylene glycol (PEG) in biomedical applications, boasting advantages in biocompatibility and degradability. While the self-assembly behavior of block copolymers containing polysarcosine-containing polymers has been reported, their potential for shape transformation remains largely untapped, limiting their versatility across various applications. In this study, we present a comprehensive methodology for synthesizing, self-assembling, and transforming polysarcosine-poly(benzyl glutamate) block copolymers, resulting in the formation of bowl-shaped vesicles, disks, and stomatocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!