Coherence of an optically illuminated single nuclear spin qubit.

Phys Rev Lett

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

Published: February 2008

We investigate the coherence properties of individual nuclear spin quantum bits in diamond [Dutt, Science 316, 1312 (2007)10.1126/science.1139831] when a proximal electronic spin associated with a nitrogen-vacancy (N-V) center is being interrogated by optical radiation. The resulting nuclear spin dynamics are governed by time-dependent hyperfine interaction associated with rapid electronic transitions, which can be described by a spin-fluctuator model. We show that due to a process analogous to motional averaging in nuclear magnetic resonance, the nuclear spin coherence can be preserved after a large number of optical excitation cycles. Our theoretical analysis is in good agreement with experimental results. It indicates a novel approach that could potentially isolate the nuclear spin system completely from the electronic environment.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.100.073001DOI Listing

Publication Analysis

Top Keywords

nuclear spin
20
nuclear
6
spin
6
coherence optically
4
optically illuminated
4
illuminated single
4
single nuclear
4
spin qubit
4
qubit investigate
4
investigate coherence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!