Stabilization of domain walls between traveling waves by nonlinear mode coupling in Taylor-Couette flow.

Phys Rev Lett

Institut für Experimentelle und Angewandte Physik, Universität Kiel, D-24098 Kiel, Germany.

Published: February 2008

We present a new mechanism that allows the stable existence of domain walls between oppositely traveling waves in pattern-forming systems far from onset. It involves a nonlinear mode coupling that results directly from the nonlinearities in the underlying momentum balance. Our work provides the first observation and explanation of such strongly nonlinearly driven domain walls that separate structured states by a phase generating or annihilating defect. Furthermore, the influence of a symmetry breaking externally imposed flow on the wave domains and the domain walls is studied. The results are obtained for vortex waves in the Taylor-Couette system by combining numerical simulations of the full Navier-Stokes equations and experimental measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.100.064501DOI Listing

Publication Analysis

Top Keywords

domain walls
16
traveling waves
8
nonlinear mode
8
mode coupling
8
stabilization domain
4
walls
4
walls traveling
4
waves nonlinear
4
coupling taylor-couette
4
taylor-couette flow
4

Similar Publications

Expression and functional analysis of mouse chitinases without the ZZ domain of Staphylococcus aureus Protein A.

Int J Biol Macromol

January 2025

Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan. Electronic address:

Chitinase plays a role in mammalian immune responses, particularly in the degradation of fungal cell walls. The aim of the present study was to express and characterize recombinant mouse chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase) without the ZZ domain, a domain that may interfere with immunological analyses. We successfully expressed recombinant chitinases without the ZZ domain (Chit1-V5-His and AMCase-V5-His) as a soluble protein from an expression vector pET21a in the Escherichia coli Rosetta-gami B (DE3) strain.

View Article and Find Full Text PDF

The floating phase, a critical incommensurate phase, has been theoretically predicted as a potential intermediate phase between crystalline ordered and disordered phases. In this study, we investigate the different quantum phases that arise in ladder arrays comprising up to 92 neutral-atom qubits and experimentally observe the emergence of the quantum floating phase. We analyze the site-resolved Rydberg state densities and the distribution of state occurrences.

View Article and Find Full Text PDF

The conventional carbonization process for synthesizing hard carbons (HCs) requires high-temperature furnace operations exceeding 1000 °C, leading to excessive energy consumption and lengthy processing times, which necessitates the exploration of more efficient synthesis methods. This study demonstrates the rapid preparation of HC anodes using intense pulsed light (IPL)-assisted photothermal carbonization without the prolonged and complex operations typical of traditional carbonization methods. A composite film of microcrystalline cellulose (MCC) and single-walled carbon nanotubes (SWCNTs) is carbonized at high temperatures in less than 1 min.

View Article and Find Full Text PDF

Spiking neural networks seek to emulate biological computation through interconnected artificial neuron and synapse devices. Spintronic neurons can leverage magnetization physics to mimic biological neuron functions, such as integration tied to magnetic domain wall (DW) propagation in a patterned nanotrack and firing tied to the resistance change of a magnetic tunnel junction (MTJ), captured in the domain wall-magnetic tunnel junction (DW-MTJ) device. Leaking, relaxation of a neuron when it is not under stimulation, is also predicted to be implemented based on DW drift as a DW relaxes to a low energy position, but it has not been well explored or demonstrated in device prototypes.

View Article and Find Full Text PDF

Manipulation of Surface Spin Configurations for Enhanced Performance in Oxygen Evolution Reactions.

Nano Lett

January 2025

Jiangxi Provincial Key Laboratory of Green Hydrogen and Advanced Catalysis, College of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, Jiangxi, China.

studies of the relationship between surface spin configurations and spin-related electrocatalytic reactions are crucial for understanding how magnetic catalysts enhance oxygen evolution reaction (OER) performance under magnetic fields. In this work, 2D FeSe nanosheets with rich surface spin configurations are synthesized via chemical vapor deposition. magnetic force microscopy and Raman spectroscopy reveal that a 200 mT magnetic field eliminates spin-disordered domain walls, forming a spin-ordered single-domain structure, which lowers the OER energy barrier, as confirmed by theoretical calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!