Coherent radiation from a relativistic electron beam is a valuable way to overcome the present limitations of conventional lasers and synchrotron radiation light sources. The typical scheme has electrons, directly from a linac, in a single-pass interaction with a laser pulse in the presence of a static undulator magnetic field. We demonstrate that a storage-ring free-electron laser can also achieve harmonic generation (down to 36.5 nm), presenting both experimental and theoretical results, and offer a reliable interpretation of the peculiar underlying physical processes involved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.100.104801 | DOI Listing |
Light Sci Appl
January 2025
Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
Graphene has unique properties paving the way for groundbreaking future applications. Its large optical nonlinearity and ease of integration in devices notably makes it an ideal candidate to become a key component for all-optical switching and frequency conversion applications. In the terahertz (THz) region, various approaches have been independently demonstrated to optimize the nonlinear effects in graphene, addressing a critical limitation arising from the atomically thin interaction length.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.
ConspectusPhotochemical reactions have always been the source of a great deal of mystery. While classified as a type of chemical reaction, no doubts are allowed that the general tenets of ground-state chemistry do not directly apply to photochemical reactions. For a typical chemical reaction, understanding the critical points of the ground-state potential (free) energy surface and embedding them in a thermodynamics framework is often enough to infer reaction yields or characteristic time scales.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
The Marcus semi-classical and quantum theories of electron transfer (ET) have been extensively used to understand and predict tunneling ET reaction rates in the condensed phase. Previously, the traditional Marcus two-state model has been extended to a three-state model, which assumes a harmonic dependence of donor (D), bridge (B), and acceptor (A) free energies on the reaction (e.g.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Jožef Stefan Institute, Ljubljana, 1000, Slovenia.
The recent discovery of ferroelectric nematic liquid crystalline phases marks a major breakthrough in soft matter research. An intermediate phase, often observed between the nonpolar and the ferroelectric nematic phase, shows a distinct antiferroelectric response to electric fields. However, its structure and formation mechanisms remain debated, with flexoelectric and electrostatics effects proposed as competing mechanisms.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
Compounds having hexagonal tungsten oxides (HTO) topology are of intense research interests owing to their potential functional properties, such as nonlinear optical (NLO) performances. However, most of the reported HTO-type compounds exhibit narrow optical bandgaps because of the d-d electronic transition of compositional d transition metals and lone pair electrons effect of Se/Te, which hinder their applications in the high-energy field, such as deep-ultraviolet (deep-UV) region. In this work, a new fluorophosphate, (NH)[ScF(PO)](POF) exhibiting HTO-topological structures is reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!