Exploiting soliton decay and phase fluctuations in atom chip interferometry of bose-einstein condensates.

Phys Rev Lett

School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.

Published: March 2008

We show that the decay of a soliton into vortices provides a mechanism for measuring the initial phase difference between two merging Bose-Einstein condensates. At very low temperatures, the mechanism is resonant, operating only when the clouds start in antiphase. But at higher temperatures, phase fluctuations trigger vortex production over a wide range of initial relative phase, as observed in recent experiments at MIT. Choosing the merge time to maximize the number of vortices created makes the interferometer highly sensitive to spatially varying phase patterns and hence atomic movement.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.100.100402DOI Listing

Publication Analysis

Top Keywords

phase fluctuations
8
bose-einstein condensates
8
phase
5
exploiting soliton
4
soliton decay
4
decay phase
4
fluctuations atom
4
atom chip
4
chip interferometry
4
interferometry bose-einstein
4

Similar Publications

Introducing superconductivity in topological materials can lead to innovative electronic phases and device functionalities. Here, we present a unique strategy for quantum engineering of superconducting junctions in moiré materials through direct, on-chip, and fully encapsulated 2D crystal growth. We achieve robust and designable superconductivity in Pd-metalized twisted bilayer molybdenum ditelluride (MoTe) and observe anomalous superconducting effects in high-quality junctions across ~20 moiré cells.

View Article and Find Full Text PDF

A recent publication by Bornes and colleagues explored the impact of the estrous cycle on mammary tumor response to neoadjuvant chemotherapy (NAC). Using genetically engineered mouse models, Bornes and colleagues revealed that chemotherapy is less effective when initiated during the diestrus stage compared to during the estrus stage. A number of changes during diestrous were identified that may reduce chemosensitivity of mammary tumors: an increased mesenchymal state of breast cancer cells during diestrous, decreased blood vessel diameters, and higher numbers of macrophages in the tumor microenvironment.

View Article and Find Full Text PDF

The tetragonal heavy-fermion superconductor CeRh_{2}As_{2} (T_{c}=0.3  K) exhibits an exceptionally high critical field of 14 T for B∥c. It undergoes a field-driven first-order phase transition between superconducting states, potentially transitioning from spin-singlet to spin-triplet superconductivity.

View Article and Find Full Text PDF

Symmetry: A Fundamental Resource for Quantum Coherence and Metrology.

Phys Rev Lett

December 2024

Ens de Lyon, Université Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France.

We introduce a new paradigm for the preparation of deeply entangled states useful for quantum metrology. We show that, when the quantum state is an eigenstate of an operator A, observables G which are completely off diagonal with respect to A have purely quantum fluctuations, as quantified by the quantum Fisher information, namely, F_{Q}(G)=4⟨G^{2}⟩. This property holds regardless of the purity of the quantum state, and it implies that off-diagonal fluctuations represent a metrological resource for phase estimation.

View Article and Find Full Text PDF

Probing Critical States of Matter on a Digital Quantum Computer.

Phys Rev Lett

December 2024

Quantinuum, 303 S. Technology Court, Broomfield, Colorado 80021, USA.

Although quantum mechanics underpins the microscopic behavior of all materials, its effects are often obscured at the macroscopic level by thermal fluctuations. A notable exception is a zero-temperature phase transition, where scaling laws emerge entirely due to quantum correlations over a diverging length scale. The accurate description of such transitions is challenging for classical simulation methods of quantum systems, and is a natural application space for quantum simulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!