Countertraveling waves in rotating Rayleigh-Bénard convection.

Phys Rev E Stat Nonlin Soft Matter Phys

Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China.

Published: February 2008

Linear and nonlinear counter-traveling waves in a fluid-filled annular cylinder with realistic no-slip boundary conditions uniformly heated from below and rotating about a vertical axis are investigated. When the gap of the annular cylinder is moderate, there exist two three-dimensional traveling waves driven by convective instabilities: a retrograde mode localized near the outer sidewall and a prograde mode adjacent to the inner sidewall with a different wave number, frequency and critical Rayleigh number. It is found that the retrogradely propagating mode is always more unstable and is marked by a larger azimuthal wave number. When the Rayleigh number is sufficiently large, both the counter-traveling modes can be excited and nonlinearly interacting, leading to an unusual nonlinear phenomenon in rotating Rayleigh-Bénard convection.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.77.027301DOI Listing

Publication Analysis

Top Keywords

rotating rayleigh-bénard
8
rayleigh-bénard convection
8
annular cylinder
8
wave number
8
rayleigh number
8
countertraveling waves
4
waves rotating
4
convection linear
4
linear nonlinear
4
nonlinear counter-traveling
4

Similar Publications

Many proteins form paralogous multimers-molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here, we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), an αβ heterotetramer that evolved from a homodimeric ancestor after a gene duplication.

View Article and Find Full Text PDF

Background: Knee valgus loading is thought to be an important contributor to noncontact anterior cruciate ligament (ACL) injuries, but the effects of training programs focusing on decreasing knee valgus loading on lower extremity biomechanics with respect to ACL injury risk remain unclear. Thus, this study aimed to examine the effect of strength training designed to strengthen the medial thigh muscles on lower extremity joint kinematics, kinetics and muscle activity during single-leg landing.

Methods: A total of 35 healthy participants randomly conducted either exercises targeting medial thigh muscles (intervention group) or exercises that did not target specific lower extremity muscles (control group).

View Article and Find Full Text PDF

A series of significantly bulky mono- and di-substituted cyclic alkyl-amino carbene (cAAC)- functionalized cyclopentadiene ring (Cp) compounds were synthesized. The functionalization of the Cp ring with cAAC ligands makes them significantly bulkier, while retaining their ligation properties. These compounds display interesting fluorescence properties.

View Article and Find Full Text PDF

Rigid, conjugated molecules are excellent candidates as molecular wires since they can achieve full extension between electrodes while maintaining conjugation. Molecular design can be used to minimize the accessible pi surface and interactions between the bridging wire and the electrode. Polyynes are archetypal molecular wires that feature a rigid molecular framework with a cross-section of a single carbon atom.

View Article and Find Full Text PDF

In the early Drosophila embryo, germband elongation is driven by oriented cell intercalation through t1 transitions, where vertical (dorsal-ventral aligned) interfaces contract and then resolve into new horizontal (anterior-posterior aligned) interfaces. Here, we show that contractile events produce a continuous "rectification" of cell interfaces, in which interfaces systematically rotate toward more vertical orientations. As interfaces rotate, their behavior transitions from elongating to contractile regimes, indicating that the planar polarized identities of cell-cell interfaces are continuously re-interpreted in time depending on their orientation angle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!