Granular media are reversible and elastic if the stress increments are small enough. An elastic stress-strain relation, employed previously to determine static stress distributions, in this paper is compared to experiments by Kuwano and Jardine [Geotechnique 52, 727 (2002)] on incremental stress-strain relations, and shown to yield satisfactory agreement. In addition, the yield condition is given a firmer footing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.77.021306 | DOI Listing |
iScience
January 2025
Anhui Key Laboratory of Mining Construction Engineering, Anhui University of Science and Technology, Huainan 232001, China.
The diversion tunnel is frequently subjected to cyclic dynamic loads during blasting and mechanical excavation. To explore the theory and mechanism of cyclic dynamic mechanical damage for granite in a diversion tunnel under cyclic loading-unloading, the incremental cyclic loading-unloading test and numerical simulation were conducted on granite samples from the diversion tunnel. According to the mechanical and deformation characteristics of rock samples in the process of cyclic loading-unloading, the stress-strain normalization theory evolution model based on viscoelastoplasticity was established, and the cyclic dynamic damage evolution mechanism of rock samples was revealed.
View Article and Find Full Text PDFJ Hypertens
December 2024
Institute for Fetology, The First Affiliated Hospital of Soochow University, Jiangsu.
Background: Paternal preconception alcohol exposure affects fetal development; however, it is largely unknown about the influences on offspring vasculature and mechanisms.
Methods: Offspring born form paternal rats treated with alcohol or water before pregnant was raised until 3 months of age. Vessel tone of mesenteric arteries was detected using myograph system; whole-cell calcium channel current in smooth muscle cells was tested using patch-clamp; molecule expressions were detected with real-time PCR, western blotting, and Dihydroethidium (DHE); DNA methylations were determined using targeted bisulfate sequencing assay.
Exp Physiol
November 2024
Department of Human Physiology, University of Oregon, Eugene, Oregon, USA.
Previous studies demonstrated that acute fatiguing exercise transiently reduces whole-muscle stiffness, which might contribute to increased risk of injury and impaired contractile performance. We sought to elucidate potential intracellular mechanisms underlying these reductions. To that end, the cellular passive Young's modulus was measured in muscle fibres from healthy, young males and females.
View Article and Find Full Text PDFEur J Sport Sci
July 2024
Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
Physical activity (PA) during childhood and adolescence is important for the accrual of maximal peak bone mass. The precise dose that benefits bone remains unclear as methods commonly used to analyze PA data are unsuitable for measuring bone-relevant PA. Using improved accelerometry methods, this study identified the amount and intensity of PA most strongly associated with bone outcomes in 11-12-year-olds.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
July 2024
Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA; Center for Functional Materials, Wake Forest University, Winston-Salem, NC, 27109, USA. Electronic address:
Polycaprolactone (PCL) nanofibers are a promising material for biomedical applications due to their biocompatibility, slow degradation rate, and thermal stability. We electrospun PCL fibers onto a striated substrate with 12 μm wide ridges and grooves and determined their mechanical properties in an aqueous solution with a combined atomic force/inverted optical microscopy technique. Fiber diameters, D, ranged from 27 to 280 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!