We consider the three-dimensional randomly diluted Ising model and study the critical behavior of the static and dynamic spin-spin correlation functions (static and dynamic structure factors) at the paramagnetic-ferromagnetic transition in the high-temperature phase. We consider a purely relaxational dynamics without conservation laws, the so-called model A. We present Monte Carlo simulations and perturbative field-theoretical calculations. While the critical behavior of the static structure factor is quite similar to that occurring in pure Ising systems, the dynamic structure factor shows a substantially different critical behavior. In particular, the dynamic correlation function shows a large-time decay rate which is momentum independent. This effect is not related to the presence of the Griffiths tail, which is expected to be irrelevant in the critical limit, but rather to the breaking of translational invariance, which occurs for any sample and which, at the critical point, is not recovered even after the disorder average.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.77.021126DOI Listing

Publication Analysis

Top Keywords

static dynamic
12
dynamic structure
12
critical behavior
12
structure factors
8
three-dimensional randomly
8
randomly diluted
8
diluted ising
8
behavior static
8
structure factor
8
critical
5

Similar Publications

Radioactive molecular iodine (I) is a critical volatile pollutant generated in nuclear energy applications, necessitating sensors that rapidly and selectively detect low concentrations of I vapor to protect human health and the environment. In this study, we design and prepare a three-component sensing material comprising reduced graphene oxide (rGO) as the substrate, silver iodide (AgI) particles as active sites, and polystyrene sulfonate as an additive. The AgI particles enable reversible adsorption and conversion of I molecules into polyiodides, inducing substantial charge density variation in rGO.

View Article and Find Full Text PDF

Solid-state detector single photon emission computed tomography (SPECT) enables the acquisition of dynamic data for calculation of myocardial blood flow (MBF) and myocardial flow reserve (MFR). Here, we report about our experiences on routine clinical use and robustness using Tc-99 m-sestamibi and Tc-99 m-tetrofosmin. 307 patients underwent dynamic list-mode myocardial perfusion imaging (MPI) and standard static MPI for clinical workup of coronary artery disease on a dedicated cardiac SPECT camera.

View Article and Find Full Text PDF

Utility of physiologically based pharmacokinetic modeling in predicting and characterizing clinical drug interactions.

Drug Metab Dispos

January 2025

Pharmacokinetics, Dynamics, Metabolism and Bioanalytics, Merck & Co, Inc, Boston, Massachusetts. Electronic address:

Physiologically based pharmacokinetic (PBPK) modeling is a mechanistic dynamic modeling approach that can be used to predict or retrospectively describe changes in drug exposure due to drug-drug interactions (DDIs). With advancements in commercially available PBPK software, PBPK DDI modeling has become a mainstream approach from early drug discovery through to late-stage drug development and is often used to support regulatory packages for new drug applications. This Minireview will briefly describe the approaches to predicting DDI using PBPK and static modeling approaches, the basic model structures and features inherent to PBPK DDI models, and key examples where PBPK DDI models have been used to describe complex DDI mechanisms.

View Article and Find Full Text PDF

Diagnostic ultrasonography of upper extremity dynamic compressive neuropathies in athletes: A narrative review.

Int Orthop

January 2025

Physical Medicine and Rehabilitation Division, Department of Orthopaedic Surgery, Stanford University, Redwood City, CA, USA.

Purpose: This narrative review identifies and summarizes current evidence for diagnostic ultrasonographic evaluation of upper extremity dynamic compressive neuropathies affecting athletes.

Methods: Relevant literature was identified using the PubMed database and then summarized.

Results: The compressive neuropathies affecting athletes we identified included: neurogenic thoracic outlet syndrome, pectoralis minor syndrome, quadrilateral space syndrome, suprascapular nerve entrapment, proximal median nerve entrapment or bicipital aponeurosis/lacertus fibrosus (lacertus syndrome), radial tunnel syndrome, and cubital tunnel syndrome.

View Article and Find Full Text PDF

Solitary foraging insects like desert ants rely heavily on vision for navigation. While ants can learn visual scenes, it is unclear what cues they use to decide if a scene is worth exploring at the first place. To investigate this, we recorded the motor behavior of Cataglyphis velox ants navigating in a virtual reality set-up (VR) and measured their lateral oscillations in response to various unfamiliar visual scenes under both closed-loop and open-loop conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!