A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Master crossover functions for one-component fluids. | LitMetric

Master crossover functions for one-component fluids.

Phys Rev E Stat Nonlin Soft Matter Phys

Equipe du Supercritique pour l'Environnement, les Matériaux et l'Espace, Institut de Chimie de la Matière Condensée de Bordeaux, UPR 9048, Centre National de la Recherche Scientifique, Université Bordeaux I, Pessac Cedex, France.

Published: February 2008

By introducing three well-defined dimensionless numbers, we establish the link between the scale dilatation method able to estimate master (i.e., unique) singular behaviors of the one-component fluid subclass and the universal crossover functions recently estimated [Garrabos and Bervillier, Phys. Rev. E 74, 021113 (2006)] from the bounded results of the massive renormalization scheme applied to the Phi(d)(4)(n) model of scalar order parameter (n=1) and three dimensions (d=3), representative of the Ising-like universality class. The master (i.e., rescaled) crossover functions are then able to fit the singular behaviors of any one-component fluid without adjustable parameter, using only one critical energy scale factor, one critical length scale factor, and two dimensionless asymptotic scale factors, which characterize the fluid critical interaction cell at its liquid-gas critical point. An additional adjustable parameter accounts for quantum effects in light fluids at the critical temperature. The effective extension of the thermal field range along the critical isochore where the master crossover functions seems to be valid corresponds to a correlation length greater than three times the effective range of the microscopic short-range molecular interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.77.021116DOI Listing

Publication Analysis

Top Keywords

crossover functions
16
master crossover
8
singular behaviors
8
behaviors one-component
8
one-component fluid
8
adjustable parameter
8
scale factor
8
critical
6
master
4
functions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!