The expected firing probability of a stochastic neuron is approximated by a function of the expected subthreshold membrane potential, for the case of colored noise. We propose this approximation in order to extend the recently proposed white noise model [A. V. Chizhov and L. J. Graham, Phys. Rev. E 75, 011924 (2007)] to the case of colored noise, applying a refractory density approach to conductance-based neurons. The uncoupled neurons of a single population receive a common input and are dispersed by the noise. Within the framework of the model the effect of noise is expressed by the so-called hazard function, which is the probability density for a single neuron to fire given the average membrane potential in the presence of a noise term. To derive the hazard function we solve the Kolmogorov-Fokker-Planck equation for a mean voltage-driven neuron fluctuating due to colored noisy current. We show that a sum of both a self-similar solution for the case of slow changing mean voltage and a frozen stationary solution for fast changing mean voltage gives a satisfactory approximation for the hazard function in the arbitrary case. We demonstrate the quantitative effect of a temporal correlation of noisy input on the neuron dynamics in the case of leaky integrate-and-fire and detailed conductance-based neurons in response to an injected current step.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.77.011910 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!