We study a generalized isotropic XY model which includes both two- and four-spin mean-field interactions. This model can be solved in the microcanonical ensemble. It is shown that in certain parameter regions the model exhibits gaps in the magnetization at fixed energy, resulting in ergodicity breaking. This phenomenon has previously been reported in anisotropic and discrete spin models. The entropy of the model is calculated and the microcanonical phase diagram is derived, showing the existence of first-order phase transitions from the ferromagnetic to a paramagnetic disordered phase. It is found that ergodicity breaking takes place in both the ferromagnetic and paramagnetic phases. As a consequence, the system can exhibit a stable ferromagnetic phase within the paramagnetic region, and conversely a disordered phase within the magnetically ordered region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.77.011125 | DOI Listing |
Nat Commun
January 2025
Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA.
Passive error correction protects logical information forever (in the thermodynamic limit) by updating the system based only on local information and few-body interactions. A paradigmatic example is the classical two-dimensional Ising model: a Metropolis-style Gibbs sampler retains the sign of the initial magnetization (a logical bit) for thermodynamically long times in the low-temperature phase. Known models of passive quantum error correction similarly exhibit thermodynamic phase transitions to a low-temperature phase wherein logical qubits are protected by thermally stable topological order.
View Article and Find Full Text PDFChaos
December 2024
Department of Atomic Physics, Eötvös Loránd University, 1117 Pázmány Péter sétány 1A, Budapest, Hungary.
We investigate how the magnetic structures of the plasma change in a large aspect ratio tokamak perturbed by an ergodic magnetic limiter, when a system parameter is non-adiabatically varied in time. We model such a scenario by considering the Ullmann-Caldas nontwist map, where we introduce an explicit time-dependence to the ratio of the limiter and plasma currents. We apply the tools developed recently in the field of chaotic Hamiltonian systems subjected to parameter drift.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Department of Physics, National University of Singapore, Singapore 117542, Singapore.
In contrast with extended Bloch waves, a single particle can become spatially localized due to the so-called skin effect originating from non-Hermitian pumping. Here we show that in kinetically constrained many-body systems, the skin effect can instead manifest as dynamical amplification within the Fock space, beyond the intuitively expected and previously studied particle localization and clustering. We exemplify this non-Hermitian Fock skin effect in an asymmetric version of the PXP model and show that it gives rise to ergodicity-breaking eigenstates-the non-Hermitian analogs of quantum many-body scars.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Chemistry, The University of Texas at Austin, Austin, TX 78712.
Understanding the biophysical basis of protein aggregation is important in biology because of the potential link to several misfolding diseases. Although experiments have shown that protein aggregates adopt a variety of morphologies, the dynamics of their formation are less well characterized. Here, we introduce a minimal model to explore the dependence of the aggregation dynamics on the structural and sequence features of the monomers.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Physical and Theoretical Chemistry, University of Oxford, Oxford OX13QZ, United Kingdom.
This article reviews recent progress in understanding the physics of many-body localisation (MBL) in disordered and interacting quantum many-body systems, from the perspective of ergodicity breaking on the associated Fock space. This approach to MBL is underpinned by mapping the dynamics of the many-body system onto that of a fictitious single particle on the high-dimensional, correlated and disordered Fock-space graph; yet, as we elaborate, the problem is fundamentally different from that of conventional Anderson localisation on high-dimensional or hierarchical graphs. We discuss in detail the nature of eigenstate correlations on the Fock space, both static and dynamic, and in the ergodic and many-body localised phases as well as in the vicinity of the MBL transition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!