The mechanism for the acid-mediated substitution of a phenolic hydroxyl group with a sulfur nucleophile has been investigated by a combination of experimental and theoretical methods. We conclude that the mechanism is distinctively different in nonpolar solvents (i.e., toluene) compared with polar solvents. The cationic mechanism, proposed for the reaction in polar solvents, is not feasible and the reaction instead proceeds through a multistep mechanism in which the acid (pTsOH) mediates the proton shuffling. From DFT calculations, we found a rate-determining transition state with protonation of the hydroxyl group to generate free water and a tight ion pair between a cationic protonated naphthalene species and a tosylate anion. Kinetic experiments support this mechanism and show that, at moderate concentrations, the reaction is first order with respect to 2-naphthol, n-propanethiol, and p-toluenesulfonic acid (pTsOH). Experimentally determined activation parameters are similar to the calculated values (Delta H exp not equal =105+/-9, Delta H calcd not equal =118 kJ mol(-1); Delta G exp not equal =112+/-18, Delta G calcd not equal =142 kJ mol(-1)).

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200701590DOI Listing

Publication Analysis

Top Keywords

experimental theoretical
8
multistep mechanism
8
hydroxyl group
8
polar solvents
8
acid ptsoh
8
delta exp
8
exp equal
8
delta calcd
8
calcd equal
8
mechanism
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!