Diethylnitrosamine (DEN) is a known carcinogen that can alkylate DNA molecules. In rats, DEN-induced hepatocellular carcinoma (HCC) model is well established. In this study, we used a two-dimensional differential gel electrophoresis (2D-DIGE) system and liquid chromatography/mass spectrometry/mass spectrometry to identify the differential expression protein profiles between the DEN-induced HCC and healthy liver cells. Western blotting and semiquantitative RT-PCR were used to further confirm the results. Seventeen differentially expressed spots were identified in DEN-induced HCC cells. Among all, the most prominent upregulated proteins include the members of the glutathione S-transferase super family, aldo-keto reductase superfamily and proteins involved in the response to oxidative stress. Downregulation was observed in 2 proteins that were known to contribute to hepatic dysfunction. This study provides the first comprehensive protein profiling of the DEN-induced HCC in rats. This model simulates the differential protein expression of human HCC and may be useful for further understanding the mechanism of HCC tumorigenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.23464 | DOI Listing |
Theranostics
January 2025
Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
The role of oxidative stress metabolism during hepatocellular carcinoma (HCC) formation potentially allows for positron emission tomography (PET) imaging of oxidative stress activity for early and precise HCC detection. However, there is currently limited data available on oxidative-stress-related PET imaging for longitudinal monitoring of the pathophysiological changes during HCC formation. This work aimed to explore PET-based longitudinal monitoring of oxidative stress metabolism and determine the sensitivity of [18F]-5-fluoroaminosuberic acid ([18F]FASu) for assessing pathophysiological processes in diethylnitrosamine (DEN) induced rat HCC.
View Article and Find Full Text PDFMol Cancer
December 2024
Center for Intelligent Oncology, Chongqing University Cancer Hospital and Chongqing University School of Medicine, and Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing, 400030, China.
Background: Protein palmitoylation is a reversible fatty acyl modification that undertakes important functions in multiple physiological processes. Dysregulated palmitoylations are frequently associated with the formation of cancer. How palmitoyltransferases for S-palmitoylation are involved in the occurrence and development of hepatocellular carcinoma (HCC) is largely unknown.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Basic Medical Sciences and Biopharmaceutical Research Institute, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
Emerging evidence suggests that the sterile alpha-motif (SAM) and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is implicated in various cancers, including hepatocellular carcinoma (HCC). However, its precise role in tumor cells and the underlying mechanisms remain unclear. This study aimed to investigate the expression patterns, prognostic values, and functional role of SAMHD1 in HCC progression.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
November 2024
Department of Gastroenterology, Ganzhou People's Hospital, Ganzhou 341000, Jiangxi, China.
Liver cancer is the most lethal form of cancer and carries a high risk of death around the world. Goniothalamin (GTN) is a styryl-lactone that possesses antiproliferative and apoptotic activity. The molecular action of GTN is not yet fully evaluated.
View Article and Find Full Text PDFDrug Des Devel Ther
October 2024
Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
Objective: To identify the polar parts in Rhubarb that cause hepatotoxicity and explore the underlying mechanisms.
Methods: The rat model of liver cancer was established by gavage of diethylnitrosamine (DEN; 0.002 g/rat) for 14 weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!