Shaping of a conformationally flexible molecular structure for spectroscopy.

Angew Chem Int Ed Engl

Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.

Published: June 2008

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200705627DOI Listing

Publication Analysis

Top Keywords

shaping conformationally
4
conformationally flexible
4
flexible molecular
4
molecular structure
4
structure spectroscopy
4
shaping
1
flexible
1
molecular
1
structure
1
spectroscopy
1

Similar Publications

Metal-organic cages and capsules exhibit space-specific functions based on their discrete hollow structures. To acquire enzyme-like asymmetric or intricate structures, they have been modified by desymmetrization with two or more different ligands. There is a need to establish new strategies that can desymmetrize structures in a simple way using only one type of ligand, which is different from the mixed-ligand approach.

View Article and Find Full Text PDF

During the process by which human immunodeficiency virus (HIV-1) enters cells, the envelope glycoprotein (Env) trimer on the virion surface engages host cell receptors. Binding to the receptor CD4 induces Env to undergo transitions from a pretriggered, "closed" (State-1) conformation to more "open" (State 2/3) conformations. Most broadly neutralizing antibodies (bNAbs), which are difficult to elicit, recognize the pretriggered (State-1) conformation.

View Article and Find Full Text PDF

Flavin adenine dinucleotide (FAD), serving as a light-absorbing coenzyme factor, can undergo conformationally isomeric complexation within different enzymes to form various enzyme-coenzyme complexes, which exhibit photocatalytic functions that play a crucial role in physiological processes. Constructing an artificial photofunctional system using FAD or its derivatives can not only develop biocompatible photocatalytic systems with excellent activities but also further enhance our understanding of the role of FAD in biological systems. Here, we demonstrate a supramolecular approach for constructing an artificial enzyme-coenzyme-type host-guest complex with photoinduced catalytic function in water.

View Article and Find Full Text PDF

A photoactivated chiral molecular clamp rotated by selective anion binding.

Chem Sci

August 2024

Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 People's Republic of China

Developing chiral molecular platforms that respond to external fields provides opportunities for designing smart chiroptical materials. Herein, we introduce a molecular clamp whose chiral properties can be turned on by photoactivation. Selective anion binding achieves rational tuning of the conformations and chiroptical properties of the clamp, including circular dichroism and circularly polarized luminescence.

View Article and Find Full Text PDF

The synthesis of [2]rotaxanes stoppered with one or two dipyrromethane groups has opened a route for the construction of mechanically interlocked molecules incorporating various porphyrinoid stations. The exploitation of those precursors allowed the creation of [3]rotaxanes and [2]catenanes based on the calix[4]phyrin motif, presenting intriguing molecular dynamics. The intrinsic flexibility of the porphyrinoid allowed the introduction of a new type of molecular motion within the rotaxanes, termed fluttering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!