Magnesium stearate is a functional excipient used to ensure efficient ejection of tablets. This study compares the functionality of a vegetable and bovine grade of magnesium stearate. Tablets were prepared by direct compression and dry granulation of a model formulation. Physical and chemical tests were performed on bulk powders, granule intermediates, and finished tablets to provide a comprehensive comparison of the two grades of magnesium stearates. Raw material characterization of the two grades showed no difference in particle size, surface area, true density, and total moisture content. However, significant differences in fatty acid composition, surface tension, and zeta potential were detected. Tablet ejection force for the physical mixture formulations was variable, showing similar ejection force for the two grades of magnesium stearate at some concentrations and different ejection forces at other concentrations. The dry granulated formulation containing vegetable-based magnesium stearate showed a lower ejection force than the formulation containing bovine-based magnesium stearate. There was no difference between the dissolution profiles of the tablets containing the two grades of magnesium stearate prepared by both methods. The results indicated that magnesium stearate interchangeability with respect to lubricant efficiency depends upon the level in which it is used and the manufacturing method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.21381 | DOI Listing |
Vet Anim Sci
March 2025
Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran.
This study aims to measure the effects of different dietary concentrations of triticale hay (TH) on productive performance, carcass characteristics, microbial protein synthesis (MPS), ruminal and blood variables, and antioxidant power in 40 fattening male Gray Shirazi lambs (BW of 33.2 ± 1.1 kg) over 81 days in a completely randomized design (10 animals/diet).
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.
View Article and Find Full Text PDFJ Drug Target
January 2025
Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon (Bk.), Pune-411041, Maharashtra, India.
Ferulic acid (FA) is a phenolic compound obtained naturally and is a versatile antioxidant identified for its potential in managing hypertension. However, its application is constrained due to its classification as a BCS Class IV moiety. To address this, we concentrated on improving its solubility and permeability by developing nanostructured lipid carriers (NLCs) of FA using emulsification probe sonication technique.
View Article and Find Full Text PDFEur J Clin Invest
January 2025
Buchinger Wilhelmi Clinic, Überlingen, Germany.
Introduction: Long-term fasting (LF) activates an adaptative response to switch metabolic fuels from food glucose to lipids stored in adipose tissues. The increase in free fatty acid (FFA) oxidation during fasting triggers health benefits. We questioned if the changes in lipid metabolism during LF could affect lipids in cell membranes in humans.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Electrical Engineering and Electronics, University of Liverpool Brownlow Hill Liverpool L69 3GJ UK
In response to the demand for epoxy-based dielectric substrates with low dielectric loss in high-frequency and high-speed signal transmission applications, this study presents a surface-engineered filler material. Utilizing ball-milling, surface-modified aluminum flakes containing organic (stearic acid) and inorganic (aluminum oxide) coatings are developed. Incorporation of the filler into the epoxy matrix results in a significant increase in dielectric permittivity, by nearly 5 times (from 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!