The research presented in this paper investigates the adsorption of cation surfactants--cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC)--onto magnetic nanoparticles and the application of this mixed hemimicelles solid-phase extraction (SPE) method for the preconcentration of several typical phenolic compounds-bisphenol A (BPA), 4-tertoctylphenol (4-OP), and 4-n-nonylphenol (4-NP)--from environmental water samples. In this novel SPE method, the charged surfactants CTAB and CPC form mixed hemimicelles on Fe3O4 nanoparticles (Fe3O4 NPs), which causes retention of analytes by strong hydrophobic and electrostatic interactions. The SPE method combines the advantages of mixed hemimicelles and magnetic nanoparticles. In order to provide guidelines forthe mixed hemimicelles SPE method development, surfactant adsorption isotherms and zeta-potential isotherms were also investigated. The main factors affecting the adsolubilization of analytes, such as the amount of Fe3O4 NPs and surfactants, the type of surfactants, the solution pH,the sample loading volume, and the desorption conditions, were investigated and optimized. A concentration factor of 800 was achieved by the extraction of 800 mL of several environmental water samples using this SPE method. Under the selected conditions, detection limits obtained for BPA, 4-OP, and 4-NP were 12, 29, 34 ng/L, respectively. The accuracy of the method was evaluated by recovery measurements on spiked samples, and good recoveries (68-104%) with low relative standard deviations from 2 to 7% were achieved. The advantages of this new SPE method include high extraction yields, high breakthrough volumes, short analysis times, and easy preparation of sorbents. To the best of our knowledge, this is the first time that a mixed hemimicelles SPE method based on magnetic separation and nanoparticles has been used for the pretreatment of environmental water samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es071817w | DOI Listing |
Chemosphere
January 2025
Chemical and Veterinary Analytical Institute Muensterland-Emscher-Lippe, Joseph-König-Str. 40, 48147, Muenster, Germany.
Perfluorocarboxylic acids and perfluorosulfonic acids accumulate in food webs, thus posing a serious threat to food safety. The European Food Safety Authority (EFSA) derived a tolerable weekly intake (TWI) of 4.4 ng/kg body weight for the sum of the four so-called EFSA-PFAS in 2020.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland.
Tellurium, recognized as one of the technology-critical elements, should be considered as a xenobiotic. Its application, i.a.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Chemistry, St. Petersburg State University, 199034 St. Petersburg, Russia.
Deep eutectic solvents (DES) have emerged as versatile, sustainable media for the synthesis of nanomaterials due to their low toxicity, tunability, and biocompatibility. This study develops a one-step method to modify commercially available screen-printed electrodes (SPE) using laser-induced pyrolysis of DES, consisting of choline chloride and tartaric acid with dissolved nickel acetate and dispersed graphene. The electrodes were patterned using a 532 nm continuous-wave laser for the in situ formation of Ni nanoparticles decorated on graphene sheets directly on the SPE surface (Ni-G/SPE).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław, 50-370, Poland.
The presence of traces of herbicides in ground and surface waters can have adverse impacts on humans and the environment. Therefore, developing a highly selective and reusable adsorbent for monitoring water quality has become important. This article describes smart green molecularly imprinted polymers (MIPs) as selective sorbents of S-metolachlor herbicide for solid phase extraction (SPE).
View Article and Find Full Text PDFJ Chromatogr A
January 2025
College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China. Electronic address:
To effectively control food safety risks caused by nitroimidazoles (NDZs), a sensitive detection method was established on the basis of a newly-developed solid-phase extraction (SPE) sorbent named as Phl-TBM that is a porous polymer prepared by crosslinking natural phloretin with (2,4,6-tris(bromomethyl)mesitylene. The Phl-TBM presented outstanding NDZs adsorption capacity, which can be ascribed to its well-developed porosity and multiple hydrogen bonding sites. With Phl-TBM as SPE sorbent, NDZs were successfully isolated and enriched from lake water, Basa fish, and beef before being assayed by high-performance liquid chromatography-diode array detector.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!