Baltic Sea sediments are among the world's most polluted regarding eutrophication and contamination. Eutrophication-induced hypoxia has caused depletion of bioturbating macrofauna in vast areas, producing laminated sediments. We investigated if reoxygenation and colonization by the invading deep-burrowing polychaete Marenzelleria neglecta may cause an augmented contaminant release from Baltic Sea sediments. Intact laminated sediment cores were exposed either to in situ hypoxia, reoxygenation, or reoxygenation combined with bioturbating M. neglecta. The release fluxes of particle-associated (N(Pat)) and dissolved (N(Diss)) PCBs and chlorinated pesticide residues (POPs) were quantified (GC-ECD) after 85 d along with contaminant concentrations in sediment and biota. Lavoisier-based mass transfer coefficients (Kf) were calculated from N(Diss). Sediment contaminant concentrations were high (sigmaPCB7: 42-52 ng g(sediment)(-1) dw) due to emissions from Stockholm. N(Diss) always exceeded N(Part) by an order of magnitude. Bioturbation enhanced N(Diss) and Kf from hypoxic sediments 0.7-3 times while reoxygenation alone had no significant effect. M. neglecta accumulated low amounts of contaminants but significantly stimulated aquatic release of bioavailable sequestered contaminants. Bioturbation should be included in aquatic contaminant fate models. We advise to consider quiescent pollutant sources and possible ecological shifts when aiming to restore eutrophicated aquatic environments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es071607jDOI Listing

Publication Analysis

Top Keywords

baltic sea
12
sea sediments
12
polychaete marenzelleria
8
marenzelleria neglecta
8
contaminant concentrations
8
sediments
5
bioturbation-driven release
4
release organic
4
organic contaminants
4
contaminants baltic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!