Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study presents a medium-pressure CO2 capture process based on hydrate crystallization in the presence of tetrahydrofuran (THF). THF reduces the incipient equilibrium hydrate formation conditions from a CO2/N2 gas mixture. Relevant thermodynamic data at 0.5, 1.0, and 1.5 mol % THF were obtained and reported. In addition, the kinetics of hydrate formation from the CO2/N2/ THF system as well as the CO2 recovery and separation efficiency were also determined experimentally at 273.75 K. The above data were utilized to develop the block flow diagram of the proposed process. The process involves three hydrate stages coupled with a membrane-based gas separation process. The there hydrate stages operate at 2.5 MPa and 273.75 K. This operating pressure is substantially less than the pressure required in the absence of THF and hence the compression costs are reduced from 75 to 53% of the power produced for a typical 500 MW power plant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es071824k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!