Degradation of 1,1- and 1,2-dichloroethane (1,1-DCA, 1,2-DCA) and carbon tetrachloride (CCl4) on Zn0 was investigated using compound specific isotope analysis (CSIA) to measure isotopic fractionation factors for chloroalkane degradation by hydrogenolysis, by alpha-elimination, and by beta-elimination. Significant differences in enrichment factors (epsilon) and associated apparent kinetic isotope effects (AKIE) were measured for these different reaction pathways, suggesting that carbon isotope fractionation by beta-elimination is substantially larger than fractionation by hydrogenolysis or by alpha-elimination. Specifically, for 1,1-DCA, the isotopic composition of the reductive alpha-elimination product (ethane) and the hydrogenolysis product (chloroethane) were the same, indicating that cleavage of a single C-Cl bond was the rate-limiting step in both cases. In contrast, for 1,2-DCA, epsilon = epsilon(reactive position) = -29.7 +/- 1.5% per hundred, and the calculated AKIE (1.03) indicated that beta-elimination was likely concerted, possibly involving two C-Cl bonds simultaneously. Compared to 1,1-DCA hydrogenolysis, the AKIE of 1.01 for hydrogenolysis of CCl4 was much lower, indicating that, for this highly reactive organohalide, mass transfer to the surface was likely partially rate-limiting. These findings are a first step toward delineating the relative contribution of these competing pathways in other abiotic systems such as the degradation of chlorinated ethenes on zerovalent iron (ZVI), iron sulfide, pyrite, or magnetite, and, potentially, toward distinguishing between degradation of chlorinated ethenes by abiotic versus biotic processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es0711819 | DOI Listing |
Front Cell Infect Microbiol
January 2025
Scientific Research Department, Hunan Academy of Chinese Medicine, Changsha, China.
Objective: This study aims to explore the therapeutic mechanism of Massa Medicata Fermentata (MMF) with different formulations on spleen deficiency constipation in mice by analyzing gastrointestinal hormones, D-xylose, intestinal microbiota, and intestinal enzyme activities.
Methods: A spleen deficiency constipation model was established using an oral administration of Sennae Folium decoction combined with controlled diet and water intake. After successful model establishment, the mice with spleen deficiency constipation were treated with MMF S1, S2, S3.
J Appl Microbiol
January 2025
Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India.
Aims: To isolate polyethylene terephthalate (PET)-degrading bacteria and elucidate the underlying mechanisms of PET biodegradation through biochemical and genome analysis.
Methods And Results: Rhodococcus rhodochrous IITR131 was found to degrade PET. Strain IITR131 genome revealed metabolic versatility of the bacterium and had the ability to form biofilm on PET sheet, resulting in the cracks, abrasions, and degradation.
J Hazard Mater
December 2024
Department of Cell Biology and Genetics, Federal University of Rio Grande do Norte, Natal 59078900, Brazil. Electronic address:
This study investigates the transcriptional profile of a novel oil-degrading microbial consortium (MC1) composed of four bacterial isolates from Brazilian oil reservoirs: Acinetobacter baumannii subsp. oleum ficedula, Bacillus velezensis, Enterobacter asburiae, and Klebsiella pneumoniae. Genomic analysis revealed an enrichment of genes associated with xenobiotic degradation, particularly for aminobenzoate, atrazine, and aromatic compounds, compared to reference genomes.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Department of Zoology, Faculty of Sciences, Kasetsart University, Bangkok, Thailand.
Exploring dietary methods to alter microbial communities and metabolic functions is becoming an increasingly fascinating strategy for improving health. Copra meal hydrolysate (CMH) is alternatively used as a gut health supplement. However, the functional diversity and metabolic activities in gut microbiome in relation to CMH treatment remain largely unknown.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!