Coxiella burnetii is an obligate intracellular bacterium, responsible for Q fever, which survives in macrophages by interfering with their microbicidal competence. As functional polarization of macrophages is critical for their microbicidal activity, we studied the activation program of monocyte-derived macrophages (MDM) stimulated with C. burnetii. This program was markedly distinct from that induced by lipopolysaccharides (LPS), a canonical inducer of M1 polarization. Indeed, C. burnetii up-regulated the expression of genes associated with M2 polarization, including TGF-beta1, IL-1 receptor antagonist (IL-1ra), CCL18, the mannose receptor and arginase-1, and only up-regulated the expression of two genes associated with M1 polarization, namely IL-6 and CXCL8. In contrast, C. burnetii down-regulated the expression of genes associated with M1 polarization such as TNF, CD80, CCR7 and TLR-2. Functional analyses showed that C. burnetii-stimulated MDM produced high levels of TGF-beta1 and CCL18, and expressed the mannose receptor and arginase-1, the latter being associated with the prevention of nitric oxide production by MDM. Finally, C. burnetii induced the release of IL-6 and CXCL8 at a lower level than LPS-stimulated MDM. Our results suggest that C. burnetii stimulated an atypical M2 activation program that may account for the persistence of C. burnetii in macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.200738067DOI Listing

Publication Analysis

Top Keywords

activation program
12
expression genes
12
genes associated
12
associated polarization
12
coxiella burnetii
8
atypical activation
8
up-regulated expression
8
mannose receptor
8
receptor arginase-1
8
il-6 cxcl8
8

Similar Publications

Coinfections with porcine circovirus types 2, 3, and 4 (PCV2, PCV3, and PCV4) are increasingly being detected in the swine industry. However, there is no commercially available vaccine which prevents coinfection with PCV2, PCV3, and PCV4. The development of a vaccine expressing capsid (Cap) fusion proteins of multiple PCVs represents a promising approach for broadly preventing infection with PCVs.

View Article and Find Full Text PDF

Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.

View Article and Find Full Text PDF

Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.

View Article and Find Full Text PDF

The ongoing global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the continuous development of innovative vaccine strategies, especially in light of emerging viral variants that could undermine the effectiveness of existing vaccines. In this study, we developed a recombinant virus-like particle (VLP) vaccine based on the Newcastle Disease Virus (NDV) platform, displaying a stabilized prefusion form of the SARS-CoV-2 spike (S) protein. This engineered S protein includes two proline substitutions (K986P, V987P) and a mutation at the cleavage site (RRAR to QQAQ), aimed at enhancing both its stability and immunogenicity.

View Article and Find Full Text PDF

Although the highlands of East Africa lack the geo-ecological landmarks of Rift Valley fever (RVF) disease hotspots to participate in cyclic RVF epidemics, they have recently reported growing numbers of small RVF clusters. Here, we investigated whether RVF cycling occurred among livestock and humans in the central highlands of Kenya during inter-epidemic periods. A 2-year prospective hospital-based study among febrile patients (March 2022-February 2024) in Murang'a County of Kenya was followed by a cross-sectional human-animal survey.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!