Targeted delivery is a highly desirable strategy to improve the diagnostic imaging and therapeutic outcome because of enhanced efficacy and reduced toxicity. In the current research, anticancer drug doxorubicin (DOX) and contrast agent for magnetic resonance imaging (MRI), herein superparamagnetic ion oxide Fe(3)O(4) (SPIO), were accommodated in the core of micelles self-assembled from amphiphilic block copolymer of poly(ethylene glycol) (PEG) and poly(epsilon-caprolactone) (PCL) with a targeting ligand (folate) attached to the distal ends of PEG (Folate-PEG-PCL). The in vitro tumor cell targeting efficacy of these folate functionalized and DOX/SPIO-loaded micelles (Folate-SPIO-DOX-Micelles) was evaluated upon observing cellular uptake of micelles by human hepatic carcinoma cells (Bel 7402 cells) which overexpresses surface receptors for folic acid. In the Prussian blue staining experiments, cells incubated with Folate-SPIO-DOX-Micelles showed much higher intracellular iron density than the cells incubated with the folate-free SPIO-DOX-Micelles. According to the flow cytometry data, cellular DOX uptake observed for the folate targeting micelle was about 2.5 fold higher than that for the non-targeting group. Furthermore, MTT assay showed that Folate-SPIO-DOX-Micelles effectively inhibited cell proliferation, while the folate-free SPIO-DOX-Micelles did not show the same feat at comparable DOX concentrations. The potential of Folate-SPIO-DOX-Micelle as a novel MRI-visible nanomedicine platform was assessed with a 1.5 T clinical MRI scanner. The acquired MRI T (2) signal intensity of cells treated with the folate targeting micelles decreased significantly. By contrast, T (2) signal did not show obvious decrease for cells treated with the folate-free micelles. Our results indicate that the multifunctional polymeric micelles, Folate-SPIO-DOX-Micelles, have better targeting tropism to the hepatic carcinoma cells in vitro than their non-targeting counterparts, and the cell targeting events of micelles can be monitored using a clinical MRI scanner.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10544-008-9180-9DOI Listing

Publication Analysis

Top Keywords

cell targeting
8
micelles folate-spio-dox-micelles
8
hepatic carcinoma
8
carcinoma cells
8
cells incubated
8
folate-free spio-dox-micelles
8
folate targeting
8
clinical mri
8
mri scanner
8
cells treated
8

Similar Publications

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Modulation of Intestinal Inflammation and Protection of Dopaminergic Neurons in Parkinson's Disease Mice through a Probiotic Formulation Targeting NLRP3 Inflammasome.

J Neuroimmune Pharmacol

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, PR China.

Emerging evidence highlights the significance of peripheral inflammation in the pathogenesis of Parkinson's disease (PD) and suggests the gut as a viable therapeutic target. This study aimed to explore the neuroprotective effects of the probiotic formulation VSL#3 and its underlying mechanism in a PD mouse model induced by MPTP. Following MPTP administration, the striatal levels of dopamine and its metabolites, as along with the survival rate of dopaminergic neurons in the substantia nigra, were significantly reduced in PD mice.

View Article and Find Full Text PDF

PMN-MDSCs are responsible for immune suppression in anti-PD-1 treated TAP1 defective melanoma.

Clin Transl Oncol

January 2025

Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510013, Guangdong, China.

Introduction: The transporter associated with antigen processing (TAP) is a key component of the classical HLA I antigen presentation pathway. Our previous studies have demonstrated that the downregulation of TAP1 contributes to tumor progression and is associated with an increased presence of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. However, it remains unclear whether the elevation of MDSCs leads to immune cell exhaustion in tumors lacking TAP1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!