A three-dimensional Monte Carlo code is used to compute the ultraviolet zenith sky radiance; the code is validated by comparison with a successive-orders-of-scattering code. The amplifications of global irradiance, diffuse irradiance, and zenith radiance that are due to multiple reflectances between a snow-covered ground surface and the atmosphere are compared. For an inhomogeneous Lambertian surface, the contribution of the site environment is analyzed; it depends slightly on the atmospheric turbidity and on the surface reflectance distribution. However, in most cases one can expect approximately 12-15% of the reflected photon contribution to come from within 1 km about the observation site, 25-30% come from areas from 1 to 5 km from the site, 43-47% from 5 to 30 km, and still 10-15% reflected at larger distances. An average contribution function is proposed and used to compute an effective reflectance, which permits retrieval of the sky radiance within 2-4% with a one-dimensional model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.39.004247 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!