In order to study the characteristics of contraluminal organic cation transport from the blood site into proximal tubular cells the stopped-flow capillary perfusion method was applied. The disappearance of N1-[3H]methylnicotinamide (NMeN+) and [3H]tetraethylammonium (TEA+) at different concentrations and contact times was measured and the following parameters evaluated: Km,NMeN = 0.54 mmol/l, Jmax,NMeN = 0.4 pmol s-1 cm-1; Km,TEA = 0.16 mmol/l, Jmax,TEA = 0.8 pmol s-1 cm-1. TEA+ inhibited NMeN+ transport and NMeN+ the uptake of TEA+. Thereby, the Ki values for inhibition correspond closely to the Km values for uptake. Similar inhibitory potencies of ten organic cation against TEA+ and NMeN+ transport provide further evidence for a common transport system. Omission of HCO3-, or Na+ and addition of K+ (with or without Ba2+) reduce NMeN+ transport, while omission of K+ (with or without valinomycin) or addition of thiocyanate has no effect. Since the manoeuvres that depolarize contraluminal electrical potential difference reduce NMeN+ transport, cell-negative electrical potential difference is suggested as a driving force for contraluminal organic cation transport from the interstitium into the cell. Furthermore, the inhibitory potency (app. Ki values) of homologous series of primary, secondary, tertiary and hydroxy amines as well as of mono- and bisquaternary ammonium compounds against NMeN+ transport was tested. The inhibitory potency increased in the sequence methyl less than ethyl less than propyl less than butyl and primary less than secondary less than tertiary amines less than quaternary ammonium compounds.(ABSTRACT TRUNCATED AT 250 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00373751DOI Listing

Publication Analysis

Top Keywords

nmen+ transport
20
primary secondary
12
secondary tertiary
12
organic cation
12
tertiary amines
8
mono- bisquaternary
8
contraluminal organic
8
transport
8
cation transport
8
pmol s-1
8

Similar Publications

The efflux of [3H] choline+ from the proximal tubular lumen was measured by using the stop-flow microperfusion method. The 2-s efflux of [3H] choline+ follows kinetics with a Michaelis constant, Km = 0.18 mmol x l-1, maximal flux, Jmax = 0.

View Article and Find Full Text PDF

The efflux of radiolabelled organic cations from the tubular lumen into proximal tubular cells was investigated by using the stop-flow microperfusion method. The efflux rate increased in the sequence: N1-methylnicotinamide (NMeN+) < cimetidine < tetraethylammonium (TEA+) < N-methyl-4-phenylpyridinium (MPP+). Preloading the animals by i.

View Article and Find Full Text PDF

Some N-containing xenobiotics were recently shown to behave as bisubstrates; that is, they interact with and are transported by both the contraluminal transport system for organic anions (PAH) and the contraluminal transport system for organic cations (NMeN). Thus we determined whether other classes of N-containing substrates, such as sulfamoyl-, sulfonylurea-, thiazide- and benzeneamino-carboxylate (nicotinate) compounds, amongst them diuretics and other drugs, also interact with both transporters. To test this, we applied the stop-flow peritubular capillary perfusion method with initial flux measurements and determined app.

View Article and Find Full Text PDF

In order to test what chemical structure is required for a substrate to interact not only with the contraluminal organic anion (p-aminohippurate, PAH) transporter, but also with the organic cation (N1-methylnicotinamide, NMeN, or tetraethylammonium, TEA) transporter, the stop-flow peritubular capillary perfusion method was applied and app. Ki values were evaluated. Zwitterionic hydrophobic dipeptides not only interact with PAH but also with NMeN transport although with lower inhibitory potency (Ki,PAH = 0.

View Article and Find Full Text PDF

In order to evaluate whether N-containing substrates interact with the organic "anion" (p-aminohippurate, PAH) or only with the organic "cation" (N1-methylnicotinamide, NMeN) transport system or with both, the stop-flow peritubular capillary microperfusion method was applied in the rat kidney in situ and the apparent Ki values of several classes or organic substrate against contraluminal NMeN and PAH transport were determined. Organic "anion" and organic "cation" transport are in inverted commas because neither transporter sees the degree of ionization in bulk solution, and they also accept nonionizable substrates [Ullrich KJ, Rumrich G (1992) Pflügers Arch 421:286-288]. Amines must be sufficiently hydrophobic (phenylethylamine, piperidine, piperazine) in order to interact with NMeN transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!