Dent disease has multiple defects attributed to proximal tubule malfunction including low-molecular-weight proteinuria, aminoaciduria, phosphaturia, and glycosuria. To understand the changes in kidney function of the Clc5 chloride/proton exchanger gene knockout mouse model of Dent disease, we examined gene expression profiles from proximal S1 and S2 tubules of mouse kidneys. We found many changes in gene expression not known previously to be altered in this disease. Genes involved in lipid metabolism, organ development, and organismal physiological processes had the greatest number of significantly changed transcripts. In addition, genes of catalytic activity and transporter activity also had a great number of changed transcripts. Overall, 720 genes are expressed differentially in the proximal tubules of the Dent Clcn5 knockout mouse model compared with those of control wild-type mice. The fingerprint of these gene changes may help us to understand the phenotype of Dent disease.

Download full-text PDF

Source
http://dx.doi.org/10.1152/physiolgenomics.00024.2008DOI Listing

Publication Analysis

Top Keywords

proximal tubules
12
dent disease
12
clcn5 knockout
8
tubules mouse
8
knockout mouse
8
mouse model
8
gene expression
8
number changed
8
changed transcripts
8
transcriptional adaptation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!