The objective was to study the effects of abomasal infusion of linseed oil, a source rich in n-3 C18:3, on whole-body response to insulin (experiment 1) and on insulin antilipolytic effects during feed restriction (experiment 2). In experiment 1, eight nonlactating, non-gestating cows were assigned to a crossover design, fed to meet maintenance requirements, and infused abomasally with either linseed oil (LIN) or tallow (TAL) at a rate of 0.54 g/kg of body weight per d for 5.5 d. Infusions were performed every 8 h during the first 3 d of each period and every 4 h thereafter. Intravenous glucose tolerance tests (IVGTT) were performed on d 5 of each period, followed by i.v. insulin challenges (IC) 12 h later. In experiment 2, six nonlactating, nongestating cows were assigned to a replicated 3 x 3 Latin square design. The experimental protocol included a water (WTR) treatment and feeding was suspended on d 3, leading to 50 and 62 h of feed restriction before IVGTT and IC, respectively. Clearance of glucose during IVGTT and IC was not affected by treatments in either experiment. However, LIN had an insulin sensitizing effect in experiment 1, because a lower insulin concentration led to the same clearance of glucose as TAL. In experiment 1, plasma nonesterified fatty acid (NEFA) concentration was low, reflecting a postprandial state, but NEFA was greater for LIN than TAL during IVGTT (108 vs. 88 +/- 4 microEq/L) and IC (133 vs. 83 +/- 9 microEq/L). In experiment 2, insulin concentrations during IVGTT did not differ across treatments. Basal plasma NEFA concentration before IVGTT tended to be greater for LIN than for TAL (612 vs. 508 microEq/L). Plasma NEFA clearance rate during IVGTT was greater for LIN than for TAL (2.8 vs. 2.5%/min), leading to a shorter time to reach half NEFA concentration (25 vs. 29 min) and greater absolute value of NEFA response area under the curve [AUC; -64,150 vs. -46,402 (microEq/L) x 180 min]. Data suggest that LIN enhanced the antilipolytic effects of insulin. Yet, other factors could have been involved because plasma NEFA concentration before IVGTT was 104 muEq/L greater for LIN than TAL for unknown reasons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2007-0714 | DOI Listing |
Sci Rep
January 2025
Department of Internal Medicine, Afzalipour Faculty of Medicine, Afzalipour Hospital Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Inflammation and oxidative stress play a pivotal role in COPD pathogenesis. Free fatty acids (FFA) as signaling molecules through a series of G-proteins coupled receptors, play an important role in regulation of the immune system and oxidative stress. For this reason, we decided to investigate the profile of FFA in the plasma in the COPD patients.
View Article and Find Full Text PDFIntroduction: Adverse exposures in utero might cause adaptations of cardiovascular and metabolic organ development, predisposing individuals to an adverse cardio-metabolic risk profile from childhood onwards. We hypothesized that adaptations in metabolic pathways underlie these associations and examined associations of metabolite profiles at birth with childhood cardio-metabolic risk factors.
Methods: The study included 763 mother-child pairs participating in an ongoing population-based prospective cohort study with an overall low disease risk.
Int J Mol Sci
January 2025
Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Melatonin is involved in various functions such as the timing of circadian rhythms, energy metabolism, and body mass gain in experimental animals. However, its effects on adipose tissue lipid metabolism are still unclear. This study analyzes the effects of melatonin on the relative gene expression of lipolytic proteins in rat mesenteric adipose tissue and free fatty acid (FFA) and glycerol plasma levels of male Wistar rats fed a high-fat (HFD) or maintenance diet.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
January 2025
Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Denmark.
Introduction: Metabolic responses to glucagon beyond the promotion of endogenous glucose production in type 1 diabetes remains poorly explored. Therefore, we aimed to investigate the metabolic responses to glucagon stimulation in type 1 diabetes and explore whether recent exposure to hypoglycemia would impact glucagon sensitivity.
Research Design And Methods: Twenty-nine participants, 19 with type 1 diabetes and ten healthy controls, underwent a hyperinsulinemic-euglycemic clamp with five-stepwise ascending glucagon injections.
J Dairy Sci
January 2025
Department of Animal Science, Iowa State University, Ames, Iowa 50011. Electronic address:
Experimental objectives were to create a chronic inflammatory model to evaluate the effects of persistent immune activation on metabolism, inflammation, and productivity in lactating dairy cows. Twelve lactating Holstein cows (631 ± 16 kg BW; 124 ± 15 DIM) were enrolled in a study with 2 experimental periods (P); during P1 (5 d), cows were fed ad libitum and baseline data were obtained. At the initiation of P2 (7 d), cows were assigned to 1 of 2 treatments: 1) saline-infused and pair-fed (PF; 5 mL intravenously (IV) sterile saline on d 1, 3, and 5; n = 6) or 2) lipopolysaccharide infused and ad libitum-fed (LPS; 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!