Aims: In endothelial cells, caveolin-1 (cav-1) is known to negatively modulate the activation of endothelial nitric oxide synthase, a key regulator of blood pressure (BP). However, the impact of genetic alteration of cav-1 on vascular nitric oxide (NO) production and BP homeostasis in vivo is unknown.

Methods And Results: We used spectral analysis of systolic blood pressure (SBP) variability in mice chronically equipped with telemetry implants to identify frequency ranges (0.05-0.4 Hz; very low frequency, VLF) specifically responding to NO, independently of changes in absolute BP or systemic neurohormone levels. VLF variability was inversely correlated to aortic vasodilator-stimulated Ser(239) phosphoprotein (VASP) phosphorylation, reflecting NO bioactivity. We show that mice deficient in cav-1 have decreased VLF variability paralleled with enhanced systemic and vascular production of NO at unchanged mean SBP levels. Conversely, VLF variability was increased upon acute injection of mice, with a peptide containing the caveolin-scaffolding domain (CSD; residues 82-101) fused to an internalization sequence of antennapedia that decreased vascular and circulating NO in vivo.

Conclusion: These data highlight the functional importance of cav-1 for the production of bioactive NO in conduit arteries and its control of central BP variability. Given the impact of the latter on target organ damage, this raises the interest for genetic, pharmacological, or molecular interventions that modulate cav-1 expression in diseases with NO-dependent endothelial dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvn080DOI Listing

Publication Analysis

Top Keywords

blood pressure
12
nitric oxide
12
vlf variability
12
spectral analysis
8
variability
6
cav-1
5
control blood
4
pressure variability
4
variability caveolin-1-deficient
4
mice
4

Similar Publications

Metabolically stable apelin analogs: development and functional role in water balance and cardiovascular function.

Clin Sci (Lond)

January 2025

Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.

Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.

View Article and Find Full Text PDF

Importance: Hypertension is the primary cardiovascular risk factor in Africa. Recently revised World Health Organization guidelines recommend starting antihypertensive dual therapy; clinical efficacy and tolerability of low-dose triple combination remain unclear.

Objectives: To compare the effect of 3 treatment strategies on blood pressure control among persons with untreated hypertension in Africa.

View Article and Find Full Text PDF

Importance: Pediatric obesity and hypertension are highly correlated. To mitigate both conditions, provision of counseling on nutrition, lifestyle, and weight to children with high blood pressure (BP) measurements is recommended.

Objective: To examine racial and ethnic disparities in receipt of nutrition, lifestyle, and weight counseling among patients with high BP at pediatric primary care visits stratified by patients' weight status.

View Article and Find Full Text PDF

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!