Antigen-induced Pten gene deletion in T cells exacerbates neuropathology in experimental autoimmune encephalomyelitis.

Am J Pathol

Department of Biochemistry and Muscular Biology, McCaig Institute for Bone and Joint Health, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.

Published: April 2008

AI Article Synopsis

  • The Pten tumor suppressor gene is crucial for the normal development of T cells, but its role in activated mature T cells is less understood.
  • Researchers used a specific genetically modified mouse model (Pten(fl/fl) GBC) to study the effects of Pten loss on autoimmune disease progression.
  • Findings showed that Pten(fl/fl) GBC mice experienced more severe symptoms of experimental autoimmune encephalomyelitis, including increased tissue damage and enhanced T cell activation, highlighting the importance of the phosphatidylinositol 3-kinase signaling pathway in T cell function during autoimmune responses.

Article Abstract

The Pten tumor suppressor gene is critical for normal intrathymic development of T cells; however, its role in mature antigen-activated T cells is less well defined. A genetically crossed mouse line, Pten(fl/fl) GBC, in which Pten gene deletions could be primarily confined to antigen-activated CD8+ T cells, enabled us to evaluate the consequences of Pten loss on the course of experimental autoimmune encephalomyelitis. Compared with Pten(fl/fl) controls, myelin oligodendrocyte glycoprotein (MOG) peptide-immunized Pten(fl/fl) GBC mice developed more severe and protracted disease. This was accompanied by increased spinal cord white matter myelin basic protein depletion and axonal damage, as well as a striking persistence of macrophage and granzyme B-expressing cellular neuroinfiltrates in the chronic phase of the disease. This persistence may be explained by the observation that anti-CD3 activated Pten(fl/fl) GBC T cells were more resistant to proapoptotic stimuli. Consistent with the predicted consequences of Pten loss, purified CD8+ T cells from Pten(fl/fl) GBC mice displayed augmented proliferative responses to anti-T-cell receptor stimulation, and MOG-primed Pten(fl/fl) GBC T cells exhibited a reduced activation threshold to MOG peptide. Pten(fl/fl) GBC mice also developed atypical central nervous system disease, manifested by prominent cervical cord and forebrain involvement. Collectively, our findings indicate that the phosphatidylinositol 3-kinase signaling pathway is an essential regulator of CD8+ T-cell effector function in experimental autoimmune encephalomyelitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2276430PMC
http://dx.doi.org/10.2353/ajpath.2008.070892DOI Listing

Publication Analysis

Top Keywords

ptenfl/fl gbc
24
experimental autoimmune
12
autoimmune encephalomyelitis
12
gbc mice
12
pten gene
8
cd8+ cells
8
consequences pten
8
pten loss
8
mice developed
8
gbc cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!