Tiam1 is a ubiquitously expressed activator of the small GTPase Rac. Previously, we found that Tiam1 knockout (KO) mice are resistant to DMBA-induced skin tumorigenicity, which correlated with increased apoptosis in keratinocytes of the skin epidermis. Here, we have studied the mechanisms by which Tiam1 protects against apoptosis. We found that Tiam1-KO keratinocytes show increased apoptosis in response to apoptotic stimuli, including growth factor deprivation and heat-shock treatment. Expression of catalytically active Tiam1, but not inactive Tiam1, rescues the apoptosis susceptibility of Tiam1-KO keratinocytes, indicating that this defect is caused by impaired Tiam1-mediated Rac activation. Apoptosis induced by growth factor starvation correlates with impaired ERK phosphorylation in Tiam1-KO keratinocytes. Moreover, Tiam1-KO keratinocytes contain lower levels of intracellular reactive oxygen species (ROS) when compared with wild-type cells. The ROS content of keratinocytes is dependent on both Tiam1 and the activity of NADPH oxidase (Nox), and is required for ERK-mediated survival signaling. Indeed, Tiam1 deficiency or the inhibition of intracellular ROS production blocks ERK phosphorylation and sensitizes wild-type keratinocytes to apoptotic stimuli. Our results indicate that the Rac activator Tiam1 controls the intracellular redox balance by Nox-mediated ROS production, which regulates ERK phosphorylation and the susceptibility of keratinocytes to apoptotic signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.017194 | DOI Listing |
PLoS One
January 2025
Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand.
Cadmium is a non-essential element and neurotoxin that causes neuroinflammation, which leads to neurodegenerative diseases and brain cancer. To date, there are no specific or effective therapeutic agents to control inflammation and alleviate cadmium-induced progressive destruction of brain cells. Fluoroquinolones (FQs), widely used antimicrobials with effective blood-brain barrier penetration, show promise in being repurposed as anti-inflammatory drugs.
View Article and Find Full Text PDFInflammation
January 2025
Research Center for Food and Cosmetic Safety and Center for Drug Research and Development, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.
Atopic dermatitis (AD) is a multifaceted inflammatory skin condition characterized by the involvement of various cell types, such as keratinocytes, macrophages, neutrophils, and mast cells. Research indicates that flavonoids possess anti-inflammatory properties that may be beneficial in the management of AD. However, the investigation of the glycoside forms for anti-AD therapy is limited.
View Article and Find Full Text PDFCancer Metab
January 2025
Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
Invasiveness of pituitary adenoma is the main cause of its poor prognosis, mechanism of which remains largely unknown. In this study, the differential proteins between invasive and non-invasive pituitary tumors (IPA and NIPA) were identified by TMT labeled quantitative proteomics. The differential metabolites in venous bloods from patients with IPA and NIPA were analyzed by untargeted metabolomics.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, China. Electronic address:
Mycoplasma pneumoniae (M. pneumoniae) is one of the major pathogens causing community-acquired pneumonia (CAP), and its pathogenic mechanism is not fully understood. Inflammatory response is the most basic and common pathological phenomenon of CAP, but the specific mechanism needs further investigation.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biological Sciences, Moravian University, 1200 Main Street, Bethlehem, PA 18018, USA. Electronic address:
Phosphorylation of connexin 43 (Cx43) is an important regulatory mechanism of gap junction (GJ) function. Cx43 is modified by several kinases on over 15 sites within its ∼140 amino acid-long C-terminus (CT). Phosphorylation of Cx43CT on S255, S262, S279, and S282 by ERK has been widely documented in several cell lines, by many investigators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!