A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling real-time 3-d lung deformations for medical visualization. | LitMetric

Modeling real-time 3-d lung deformations for medical visualization.

IEEE Trans Inf Technol Biomed

M.D. Anderson Cancer Center Orlando and the College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA.

Published: March 2008

In this paper, we propose a physics-based and physiology-based approach for modeling real-time deformations of 3-D high-resolution polygonal lung models obtained from high-resolution computed tomography (HRCT) images of normal human subjects. The physics-based deformation operator is nonsymmetric, which accounts for the heterogeneous elastic properties of the lung tissue and spatial-dynamic flow properties of the air. An iterative approach is used to estimate the deformation with the deformation operator initialized based on the regional alveolar expandability, a key physiology-based parameter. The force applied on each surface node is based on the airflow pattern inside the lungs, which is known to be based on the orientation of the human subject. The validation of lung dynamics is done by resimulating the lung deformation and comparing it with HRCT data and computing force applied on each node derived from a 4-D HRCT dataset of a normal human subject using the proposed deformation operator and verifying its gradient with the orientation.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TITB.2007.899489DOI Listing

Publication Analysis

Top Keywords

deformation operator
12
modeling real-time
8
normal human
8
force applied
8
human subject
8
lung
5
deformation
5
real-time 3-d
4
3-d lung
4
lung deformations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!