One of the possible adverse effects of transgenic insecticidal crops is the unintended decline in the abundance of nontarget arthropods. Field trials designed to evaluate potential nontarget effects can be more complex than expected because decisions to conduct field trials and the selection of taxa to include are not always guided by the results of laboratory tests. Also, recent studies emphasize the potential for indirect effects (adverse impacts to nontarget arthropods without feeding directly on plant tissues), which are difficult to predict because of interactions among nontarget arthropods, target pests, and transgenic crops. As a consequence, field studies may attempt to monitor expansive lists of arthropod taxa, making the design of such broad studies more difficult and reducing the likelihood of detecting any negative effects that might be present. To improve the taxonomic focus and statistical rigor of future studies, existing field data and corresponding power analysis may provide useful guidance. Analysis of control data from several nontarget field trials using repeated-measures designs suggests that while detection of small effects may require considerable increases in replication, there are taxa from different ecological roles that are sampled effectively using standard methods. The use of statistical power to guide selection of taxa for nontarget trials reflects scientists' inability to predict the complex interactions among arthropod taxa, particularly when laboratory trials fail to provide guidance on which groups are more likely to be affected. However, scientists still may exercise judgment, including taxa that are not included in or supported by power analyses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1603/0046-225x(2008)37[1:sonatf]2.0.co;2 | DOI Listing |
Naturwissenschaften
January 2025
Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan.
Many butterfly species are conspicuous flower visitors. However, understanding their flower visitation patterns in natural habitats remains challenging due to the difficulty of tracking individual butterflies. Therefore, we aimed at establishing a protocol to solve the problem using the Common five-ring butterfly, Ypthima argus (Nymphalidae: Satyrinae).
View Article and Find Full Text PDFEcology
January 2025
Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
Antarctica is one of Earth's most untouched, inhospitable, and poorly known regions. Although knowledge of its biodiversity has increased over recent decades, a diverse, wide-ranging, and spatially explicit compilation of the biodiversity that inhabits Antarctica's permanently ice-free areas is unavailable. This absence hinders both Antarctic biodiversity research and the integration of Antarctica in global biodiversity-related studies.
View Article and Find Full Text PDFEcology
January 2025
Department of Biology, University of Louisville, Louisville, Kentucky, USA.
Lightning strikes are a common source of disturbance in tropical forests, and a typical strike generates large quantities of dead wood. Lightning-damaged trees are a consistent resource for tropical saproxylic (i.e.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris), 4 place Jussieu, F-75005 Paris, France.
In the animal kingdom, metamorphosis is a well-known developmental transition within various taxa (Cnidarians, Echinoderms, Molluscs, Arthropods, Vertebrates, etc.), which is characterized by the switching from a larval stage to an adult form through the induction of morpho-anatomical, physiological, behavioral, and/or ecological changes. Over the last decades, numerous studies have focused on the hormonal control of cellular processes underlying metamorphosis.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
Interactions between microbial communities and the host can modulate mosquito biology, including vector competence. Therefore, future vector biocontrol measures will utilize these interactions and require extensive monitoring of the mosquito microbiome. Metabarcoding strategies will be useful for conducting vector monitoring on a large scale.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!