Synthetic polycations have shown promise as gene delivery vehicles but suffer from an unacceptable toxicity and low transfection efficiency. Novel architectures are being explored to increase transfection efficiency, including copolymers with a thermoresponsive character. The physicochemical characterization of a family of copolymers comprising a core of the cationic polymer poly(ethylene imine) (PEI) with differing thermoresponsive poly( N-isopropylacrylamide) (PNIPAM) grafts has been carried out using pulsed-gradient spin-echo NMR (PGSE-NMR) and small-angle neutron scattering (SANS). For the copolymers that have longer chain PNIPAM grafts, there is clear evidence of the collapse of the grafts with increasing temperature and the associated emergence of an attractive interpolymer interaction. These facets depend on the number of PNIPAM grafts attached to the PEI core. While a collapse in the smaller PNIPAM grafts is observed for the third polymer, there is no appearance of the interpolymer attractive interaction. These observations provide further insight into the association behavior of these copolymers, which is fundamental to developing a full understanding of how they interact with nucleic acids. Furthermore, the differing behaviors of the three copolymers over temperatures in which the PNIPAM blocks undergo coil-to-globule transitions is indicative of changes in the presentation of charged-core and hydrophobic chain components, which are key factors affecting nucleic acid binding and, ultimately, cell transfection ability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm701096p | DOI Listing |
Polymers (Basel)
November 2024
División de Física Aplicada, Centro de Investigación Científica y Educación Superior de Ensenada, Ensenada 22860, Mexico.
A series of copolymers containing a thermo-responsive biocompatible first block of poly[di(ethylene glycol) methyl ether methacrylate)--(oligo(ethylene glycol) methyl ether methacrylate], P(DEGMA--OEGMA) were chain-extended to incorporate either poly(-isopropylacrylamide), PNIPAAm or poly(-isopropylacrylamide--butyl acrylate), P(NIPAAm-co-BA) as second thermo-responsive block using reversible addition-fragmentation chain transfer (RAFT) polymerization. P(DEGMA--OEGMA)--PNIPAAm copolymers showed two response temperatures at 33 and 43 °C in an aqueous solution forming stable aggregates at 37 °C. In contrast, P(DEGMA--OEGMA)--P(NIPAAm--BA) copolymers showed aggregation below room temperature due to the shift in response temperature provoked by the presence of hydrophobic butyl acrylate (BA) units, and shrinkage upon heating up to body temperature, while maintaining the second response temperature above 40 °C.
View Article and Find Full Text PDFCarbohydr Polym
January 2025
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
Polysaccharides-based smart fertilizers are essential for promoting plant growth, yet significant challenges exist in achieving stable structures and synchronizing nutrient release and plant growth. This study developed a temperature-responsive gating chitosan-based microcapsule (CTSMC-g-PNIPAM) by grafting N-isopropyl acrylamide (NIPAM) onto chitosan microcapsules (CTSMC) via atom transfer radical polymerization (ATRP). The interfacial crosslinking of chitosan (CTS) and terephthalendehyde (TPA) formed the CTSMC matrix with a hollow chamber structure and ensured stability.
View Article and Find Full Text PDFSmall
November 2024
Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany.
Achieving adequate cell densities remains a major challenge in establishing economic biotechnological and biomedical processes. A possible remedy is microcarrier-based cultivation in stirred-tank bioreactors (STBR), which offers a high surface-to-volume ratio, appropriate process control, and scalability. However, despite their potential, commercial microcarriers are currently limited to material systems featuring unnatural mechanical properties and low adaptability.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania.
Natural polysaccharides can serve as carriers of genes owing to their intrinsic biocompatibility, biodegradability, and low toxicity. Additionally, they can be easily chemically modified, e.g.
View Article and Find Full Text PDFBiotechnol J
October 2024
State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!