Many pigmented heterokonts are able to synthesize elements of their cell walls (the frustules) of dense biogenic silica. These include diatom algae, which occupy a significant place in the biosphere. The siliceous frustules of diatoms have species-specific patterns of surface structures between 10 and a few hundred nanometers. The present review considers possible mechanisms of uptake of silicic acid from the aquatic environment, its transport across the plasmalemma, and intracellular transport and deposition of silica inside the specialized Silica Deposition Vesicle (SDV) where elements of the new frustule are formed. It is proposed that a complex of silicic acid with positively charged proteins silaffins and polypropylamines remains a homogeneous solution during the intracellular transport to SDV, where biogenic silica precipitates. The high density of the deposited biogenic silica may be due to removal of water from the SDV by aquaporins followed by syneresis--a process during which pore water is expelled from the network of the contracting gel. The pattern of aquaporins in the silicalemma, the membrane embracing the SDV, can determine the pattern of species-specific siliceous nanostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bies.20731DOI Listing

Publication Analysis

Top Keywords

biogenic silica
12
pigmented heterokonts
8
silicic acid
8
intracellular transport
8
silica
5
silicon nanotechnologies
4
nanotechnologies pigmented
4
heterokonts pigmented
4
heterokonts synthesize
4
synthesize elements
4

Similar Publications

Biogenic silica (SiO) sourced from living organisms, especially plants such as rice and other cereals, has recently been successfully applied in different polymeric compositions. Another rich source of biogenic silica is common horsetail ( L.), containing up to 25% SiO in the dry matter.

View Article and Find Full Text PDF

Due to their fast precipitation rate, sulfate evaporites represent excellent repositories of past life on Earth and potentially on other solid planets. Nevertheless, the preservation potential of biogenic remains can be compromised by extremely fast early diagenetic processes. The upper Miocene, gypsum-bearing sedimentary successions of the Mediterranean region, that formed ca.

View Article and Find Full Text PDF

Amino compounds are of significant interest in dietary, clinical, and quality control fields. Efficient extraction is crucial for comprehensive metabolomics, especially for amino acids and biogenic amines, but traditional solid-phase extraction (SPE) methods are costly and require large solvent volumes. Miniaturized SPE techniques, like pipette-tip micro-solid-phase extraction (PT-µ-SPE), offer promising alternatives by improving throughput and reducing solvent and sorbent usage.

View Article and Find Full Text PDF

In pursuit of sustainable nanomaterial production, this study presents a novel biogenic fibrous silica sphere functionalized with a crown ether ionic liquid for advanced dual-adsorption of methyl orange and Cd(II) from aqueous solution. Sorghum waste serves as the silica source in the adsorbent preparation process, ensuring an eco-friendly approach. The benzo-15-crown-5 ionic liquid is coupled to thiol-functionalized fibrous silica spheres through an efficient thiol-ene click reaction.

View Article and Find Full Text PDF

The exploitation of drought is a critical worldwide challenge that influences wheat growth and productivity. This study aimed to investigate a synergistic amendment strategy for drought using the single and combined application of plant growth-promoting microorganisms (PGPM) () and biogenic silica nanoparticles (SiONPs) from rice husk ash (RHA) on Saudi Arabia's Spring wheat Summit cultivar ( L.) for 102 DAS (days after sowing).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!