Novel approach to fast determination of multiple pesticide residues using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

Department of Food Chemistry and Analysis, Institute of Chemical Technology, Technická 3, CZ-166 28 Prague 6, Czech Republic.

Published: April 2008

A rapid, high-throughput method employing ultra-performance liquid chromatography with tandem quadrupole mass spectrometry (UPLC-MS/MS) was developed and optimized for simultaneous quantification and confirmation of 64 pesticide residues and their toxic metabolites in fruit extracts prepared by a buffered QuEChERS procedure. The total time required for UPLC-MS/MS analysis was 8 min plus 2 min for re-equilibration to the initial UPLC conditions. Performance characteristics were determined for apple extracts spiked at 10 microg kg(-1). The repeatability of measurements expressed as relative standard deviations was in the range 1.5-13% at this level for most analytes. Thanks to very low limits of quantification (<10 microg kg(-1)for the majority of pesticides), an optimized method allows for the reliable control of not only common maximum residue limits (MRLs) set by European Union regulation for various pesticides/fruit combinations, but also of a uniform MRL of 10 microg kg(-1)endorsed for baby food.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02652030701570156DOI Listing

Publication Analysis

Top Keywords

pesticide residues
8
ultra-performance liquid
8
mass spectrometry
8
spectrometry uplc-ms/ms
8
novel approach
4
approach fast
4
fast determination
4
determination multiple
4
multiple pesticide
4
residues ultra-performance
4

Similar Publications

In situ quantification of fungicide residue on wheat leaf surfaces using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging technology.

Food Chem X

January 2025

State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.

To overcome the time-consuming off-site limitations in conventional pesticide detection, this contribution presents an in situ quantitative analysis detection strategy for pesticides on leaf surfaces using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging technology. Taking fungicide metrafenone as a representative, we initially screened seven commonly used matrices, and identifying α-cyano-4-hydroxycinnamic acid as the most effective one in positive mode. Subsequently, coating the matrix using sublimation spraying method resulted in the highest mass intensity.

View Article and Find Full Text PDF

FTW SERS probes with Ag NCs-GO composite structure excited by evanescent wave for in situ detection of permethrin.

Anal Chim Acta

March 2025

Zhejiang Key Laboratory of Advanced Optical Functional Materials and Devices, Ningbo University, Ningbo, 315211, China; Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China. Electronic address:

Background: Permethrin is a pesticide used to kill insects, and once used in excess, it poses a great threat to the environment and human health, therefore, it is necessary to realize the rapid and accurate detection of permethrin. Fiber optic surface enhanced Raman scattering (SERS) probes have the advantages of small volume and can be used for remote monitoring, which have great potential for application in achieving in-situ detection of pesticide residues.

Results: Fiber taper waist (FTW) SERS probes modified by silver nanocubes-graphene oxide (Ag NCs-GO) composite structures were prepared for in situ detection of permethrin in lake water.

View Article and Find Full Text PDF

Multiple gRNAs-assisted CRISPR/Cas12a-based portable aptasensor enabling glucometer readout for amplification-free and quantitative detection of malathion.

Anal Chim Acta

March 2025

College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Sichuan Province Key Laboratory of Natural Products and Small Molecule Synthesis, Leshan, Sichuan, 614000, PR China. Electronic address:

Background: The threat of toxic malathion residues to human health has always been a serious food safety issue. The CRISPR/Cas system represents an innovative detection technology for pesticide residues, but its application to malathion detection has not been reported yet. In addition, the multiple-guide RNA (gRNA) powered-CRISPR/Cas biosensor has the advantages of being fast, sensitive and does not require pre-amplification.

View Article and Find Full Text PDF

Enantioselection behaviors and risk assessments of chiral pesticide ethiprole and its chiral metabolite ethiprole amide in five kinds of vegetables.

Food Chem

January 2025

State Key Laboratory of Agricultural Products Safety/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China. Electronic address:

Ethiprole is a second-generation phenylpyrazole insecticide used in agricultural production as an alternative to fipronil due to its lower toxicity to bees. Ethiprole amide is chiral metabolite of ethiprole, but information regarding its formation and degradation in vegetables is limited. Here, the absolute configuration of ethiprole amide enantiomer was determined through circular dichroism, and the behaviors of chiral ethiprole and its metabolites in five kinds of vegetables were studied through field experiments.

View Article and Find Full Text PDF

The European regulatory system for plant protection products-cause of a "Silent Spring" or highly advanced and protective?

Integr Environ Assess Manag

January 2025

Industrieverband Agrar e. V. (IVA), Wissenschaft und Innovation, Frankfurt am Main, Germany.

Current publications that are shaping public perception repeatedly claim that residues of plant protection products (PPP) in the environment demonstrate gaps in assessing the exposure and effects of PPP, allegedly revealing the inability of the European regulatory system to prevent environmental contamination and damage such as biodiversity decline. The hypothesis is that environmental risk assessments rely on inappropriate predictive models that underestimate exposure and do not explicitly account for the impact of combinations of environmental stressors and physiological differences in stress responses. This article puts this criticism into context to allow for a more balanced evaluation of the European regulatory system for PPP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!