Striatal neurons encoded temporal information in duration discrimination task.

Exp Brain Res

Department of Physiology, Kinki University School of Medicine, Ohno-Higashi 377-2, Osaka-Sayama, Osaka 589-8511, Japan.

Published: April 2008

To clarify the roles of the basal ganglia in time perception, single-unit activity was recorded from both sides of the striatum of a monkey performing a duration discrimination task. In the task, two visual cues were presented successively in different durations (0.2 approximately 1.6 s). Each cue presentation was followed by a 1-s delay period. The subject was instructed to choose a longer presented cue after the second delay period. There were two types of trials for sequence of cue duration, the long-short (LS) trials in which the first cue (C1) was longer than the second cue (C2) and the short-long (SL) trials in which the C1 was shorter than the C2. Striatal neurons phasically responded during the first delay (D1) and second delay (D2) periods. Responses during the D1 period changed depending on C1 duration. Activity of populations of D1-response neurons correlated with C1 duration positively or negatively. Responses during the D2 period differed between the LS and SL trials. Activity of population of D2-response neurons also changed depending on C2 duration. But the dependence on C2 duration was affected by the trial type, that is, whether the C2 was longer or shorter compared to the C1. These findings suggest that striatal neurons could encode cue durations with monotonically changing responses in the D1 period and discrimination results between the two cue durations in the D2 period.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-008-1347-3DOI Listing

Publication Analysis

Top Keywords

striatal neurons
12
responses period
12
duration discrimination
8
discrimination task
8
delay period
8
second delay
8
changed depending
8
depending duration
8
cue durations
8
duration
7

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India.

Background: Parkinson's disease is a hypokinetic disorder characterized by selective loss of dopaminergic in substantia nigra pars compacta (SNPc) region of mid-brain. Dopaminergic degeneration of neurons is considered to be due to oxidative stress, neuroinflammation, neurons mitochondrial dysfunction and glutamate excitotoxicity etc. Inosine a purine nucleoside has been reported to produce anti-oxidant, anti-inflammatory and neuromodulatory actions in previous studies.

View Article and Find Full Text PDF

Parkinson disease (PD) is a multisystem disorder marked by progressive dopaminergic neuronal degeneration in the substantia nigra, as well as nondopaminergic systems. Our aim was to investigate longitudinal changes in -(3-[F]fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (F-FP-CIT) binding at the putamen, substantia nigra, and raphe nuclei in PD. This retrospective cohort study enrolled 127 patients with PD, who underwent F-FP-CIT PET scans twice or more, and 71 age- and sex-matched healthy controls.

View Article and Find Full Text PDF

Parkinson's disease (PD), characterized by progressive degeneration of dopaminergic neurons in substantia nigra, has no disease-modifying therapy. Mesenchymal stem cell (MSC) therapy has shown great promise as a disease-modifying solution for PD. Induced pluripotent stem cell-derived MSC (iMSC) not only has stronger neural repair function, but also helps solve the problem of MSC heterogeneity.

View Article and Find Full Text PDF

Intracellular α-synuclein assemblies are sufficient to alter nanoscale diffusion in the striatal extracellular space.

NPJ Parkinsons Dis

December 2024

Univ. Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000, Bordeaux, France.

α-synucleinopathies progression involves the spread of α-synuclein aggregates through the extracellular space (ECS). Single-particle tracking studies showed that α-synuclein-induced neurodegeneration increases ECS molecular diffusivity. To disentangle the consequences of neuronal loss versus α-synuclein-positive intracellular assemblies formation, we performed near-infrared single-particle tracking to characterise ECS rheology in the striatum of mouse models of α-synucleinopathies.

View Article and Find Full Text PDF

Circuit-based biomarkers distinguishing the gradual progression of Lewy pathology across synucleinopathies remain unknown. Here, we show that seeding of α-synuclein preformed fibrils in mouse dorsal striatum and motor cortex leads to distinct prodromal-phase cortical dysfunction across months. Our findings reveal that while both seeding sites had increased cortical pathology and hyperexcitability, distinct differences in electrophysiological and cellular ensemble patterns were crucial in distinguishing pathology spread between the two seeding sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!