Quercetin is a flavonoid compound that has been demonstrated to be a potent antioxidant in vitro. The objective of this study was to evaluate if quercetin ingestion would increase plasma antioxidant measures and attenuate increases in exercise-induced oxidative damage. Forty athletes were recruited and randomized to quercetin or placebo. Subjects consumed 1000 mg quercetin or placebo each day for 6 weeks before and during 3 d of cycling at 57% work maximum for 3 h. Blood was collected before and immediately after exercise each day, and analyzed for F2-isoprostanes, nitrite, ferric-reducing ability of plasma, trolox equivalent antioxidant capacity, and C-reactive protein. Statistical analyses involved a 2 (treatment) x 6 (times) repeated measures analysis of variance to test main effects. F2-isoprostanes, nitrite, ferric-reducing ability of plasma, trolox equivalent antioxidant capacity, and C-reactive protein were significantly elevated as a result of exercise, but no group effects were found. Despite previous data demonstrating potent antioxidant actions of quercetin in vitro, this study indicates that this effect is absent in vivo and that chronic quercetin ingestion does not exert protection from exercise-induced oxidative stress and inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1139/H07-177DOI Listing

Publication Analysis

Top Keywords

quercetin ingestion
12
exercise-induced oxidative
12
chronic quercetin
8
oxidative damage
8
potent antioxidant
8
quercetin placebo
8
f2-isoprostanes nitrite
8
nitrite ferric-reducing
8
ferric-reducing ability
8
ability plasma
8

Similar Publications

Mechanisms and early efficacy data of caloric restriction and caloric restriction mimetics in neurodegenerative disease.

Neuroscience

January 2025

Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India; Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576 104, India. Electronic address:

Neurodegenerative disorders (NDDs) have been prevalent for more than a decade, and the number of individuals affected per year has increased exponentially. Among these NDDs, Alzheimer's disease, which causes extreme cognitive impairment, and Parkinson's disease, characterized by impairments in motor activity, are the most prevalent. While few treatments are available for clinical practice, they have minimal effects on reversing the neurodegeneration associated with these debilitating diseases.

View Article and Find Full Text PDF

Simultaneous ingestion of apple pectin enhances the absorption and antioxidant activity of quercetin in rats.

Food Sci Biotechnol

January 2025

Department of Nutrition, Faculty of Health Sciences, Aomori University of Health and Welfare, 58-1 Mase, Hamadate, Aomori 030-8505 Japan.

The enhanced bioavailability of quercetin (Qr), which has low absorption, may have beneficial effects on human health. This study aimed to elucidate the effects of simultaneous pectin ingestion on the absorption and antioxidant activity of Qr. Qr concentrations in the plasma and urine of rats fed Qr + cellulose or Qr + pectin diets were determined, and thiobarbituric acid reactive substances (TBARS) in oxidized low-density lipoprotein (LDL) were measured.

View Article and Find Full Text PDF

The natural flavonoid Quercetin (QT) showed a potential for various health benefits, but its pharmaceutical applications are hindered by low solubility, permeability, and limited bioavailability. This research aimed to synthesize, develop and optimize polylactic acid co-glycolic acid (PLGA) nanobubbles using solvent evaporation method as a sustained delivery system for QT, thus improving stability and bioavailability. Through a four-factor, three-level Box Behnken Design, 29 experimental runs were carried out to optimize QT-PLGA nanobubbles.

View Article and Find Full Text PDF

Individual observational studies examining the association between polyphenols and the risk of lung cancer have reported mixed findings. Therefore, we performed a systematic review and meta-analysis to determine the pooled effects between polyphenol intake and lung cancer risk. A systematic search was performed on PubMed, Scopus, and Web of Science databases in April 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!