A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

p110 CUX1 cooperates with E2F transcription factors in the transcriptional activation of cell cycle-regulated genes. | LitMetric

The transcription factor p110 CUX1 was shown to stimulate cell proliferation by accelerating entry into S phase. As p110 CUX1 can function as a transcriptional repressor or activator depending on promoter context, we investigated its mechanism of transcriptional activation using the DNA polymerase alpha gene promoter as a model system. Linker-scanning analysis revealed that a low-affinity E2F binding site is required for transcriptional activation. Moreover, coexpression with a dominant-negative mutant of DP-1 suggested that endogenous E2F factors are indeed needed for p110-mediated activation. Tandem affinity purification, coimmunoprecipitation, chromatin immunoprecipitation, and reporter assays indicated that p110 CUX1 can engage in weak protein-protein interactions with E2F1 and E2F2, stimulate their recruitment to the DNA polymerase alpha gene promoter, and cooperate with these factors in transcriptional activation. On the other hand, in vitro assays suggested that the interaction between CUX1 and E2F1 either is not direct or is regulated by posttranslational modifications. Genome-wide location analysis revealed that targets common to p110 CUX1 and E2F1 included many genes involved in cell cycle, DNA replication, and DNA repair. Comparison of the degree of enrichment for various E2F factors suggested that binding of p110 CUX1 to a promoter will favor the specific recruitment of E2F1, and to a lesser extent E2F2, over E2F3 and E2F4. Reporter assays on a subset of common targets confirmed that p110 CUX1 and E2F1 cooperate in their transcriptional activation. Overall, our results show that p110 CUX1 and E2F1 cooperate in the regulation of many cell cycle genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2423173PMC
http://dx.doi.org/10.1128/MCB.02089-07DOI Listing

Publication Analysis

Top Keywords

p110 cux1
32
transcriptional activation
20
cux1 e2f1
16
p110
8
factors transcriptional
8
cux1
8
dna polymerase
8
polymerase alpha
8
alpha gene
8
gene promoter
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!