Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The target of rapamycin (TOR) signaling regulates the nucleocytoplasmic shuttling of transcription factors in yeast. Whether the mammalian counterpart of TOR (mTOR) also regulates nucleocytoplasmic shuttling is not known. Using a phospho-specific monoclonal antibody, we demonstrate that mTOR phosphorylates Ser(168,170) of endogenous NFATc4, which are conserved gate-keeping Ser residues that control NFAT subcellular distribution. The mTOR acts as a basal kinase during the resting state to maintain NFATc4 in the cytosol. Inactivation and nuclear export of NFATc4 are mediated by rephosphorylation of Ser(168,170), which can be a nuclear event. Kinetic analyses demonstrate that rephosphorylation of Ser(168,170) of endogenous NFATc4 is mediated by mTOR and, surprisingly, by extracellular signal-regulated kinase 5 (ERK5) mitogen-activated protein kinase as well. Ablation of ERK5 in the Erk5(-/-) cells ascertains defects in NFATc4 rephosphorylation and nucleocytoplasmic shuttling. In addition, phosphorylation of NFATc4 by ERK5 primes subsequent phosphorylation mediated by CK1alpha. These results demonstrate that distinct protein kinases are integrated to phosphorylate the gate-keeping residues Ser(168,170) of NFATc4, to regulate subcellular distribution. These data also expand the repertoire of physiological substrates of mTOR and ERK5.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2423171 | PMC |
http://dx.doi.org/10.1128/MCB.01847-07 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!