The use of the thiazolidinedione insulin sensitizers rosiglitazone and pioglitazone for the treatment of type 2 diabetes mellitus in recent years has proven to be effective in helping patients resume normal glycemic control. However, their use is often associated with undesirable side effects including peripheral edema, congestive heart failure and weight gain. Here, we report the identification and characterization of a novel selective PPARgamma modulator, SPPARgammaM5 ((2S)-2-(2-chloro-5-{[3-(4-chlorophenoxy)-2-methyl-6-(trifluoromethoxy)-1H-indol-1-yl]methyl} phenoxy)propionic acid), which has notable insulin sensitizing properties and a superior tolerability profile to that of rosiglitazone. SPPARgammaM5 is a potent ligand of human PPARgamma with high selectivity versus PPARalpha or PPARdelta in receptor competitive binding assays. In cell-based transcriptional activation assays, SPPARgammaM5 was a potent partial agonist of human PPARgamma in comparison to the PPARgamma full agonist rosiglitazone. Compared to rosiglitazone or the PPARgamma full agonist COOH (2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid), SPPARgammaM5 induced an attenuated PPARgamma-regulated gene expression profile in fully differentiated 3T3-L1 adipocytes and white adipose tissue of chronically treated db/db mice. SPPARgammaM5 treatment also reduced the insulin resistance index by homeostasis model assessment (HOMA), suggesting an improvement in insulin resistance in these db/db mice. Treatment of obese Zucker rats with either rosiglitazone or SPPARgammaM5 resulted in an improvement in selected parameters that serve as surrogate indicators of insulin resistance and hyperlipidemia. However, unlike rosiglitazone, SPPARgammaM5 did not cause significant fluid retention or cardiac hypertrophy in these rats. Thus, compounds such as SPPARgammaM5 may offer beneficial effects on glycemic control with significantly attenuated adverse effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2007.12.036DOI Listing

Publication Analysis

Top Keywords

rosiglitazone sppargammam5
12
insulin resistance
12
novel selective
8
glycemic control
8
sppargammam5
8
sppargammam5 potent
8
human ppargamma
8
ppargamma full
8
full agonist
8
db/db mice
8

Similar Publications

The incidence of Diabetes Mellitus (DM) has increased to alarming levels not only in developed countries but also in developing and underdeveloped countries. Scientific data have made it clear by now that patients with DM are predisposed to many other diseases. One of the worst associations of DM is with obesity and the number of DM patients with obesity is increasing at a very fast pace due to dramatic change in life style around the world in last few decades.

View Article and Find Full Text PDF

PPARγ activation plays an important role in glucose metabolism by enhancing insulin sensitization. PPARγ is a primary target for thiazolidinedione-structured insulin sensitizers like pioglitazone and rosiglitazone employed for the treatment of type 2 diabetes mellitus. Additionally, PPARγ activation inhibits adhesion cascades and detrimental vascular inflammatory events.

View Article and Find Full Text PDF

The use of the thiazolidinedione insulin sensitizers rosiglitazone and pioglitazone for the treatment of type 2 diabetes mellitus in recent years has proven to be effective in helping patients resume normal glycemic control. However, their use is often associated with undesirable side effects including peripheral edema, congestive heart failure and weight gain. Here, we report the identification and characterization of a novel selective PPARgamma modulator, SPPARgammaM5 ((2S)-2-(2-chloro-5-{[3-(4-chlorophenoxy)-2-methyl-6-(trifluoromethoxy)-1H-indol-1-yl]methyl} phenoxy)propionic acid), which has notable insulin sensitizing properties and a superior tolerability profile to that of rosiglitazone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!