Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aluminum intoxication can cause damage to the cognitive function and neurodegenerative diseases. In the present study, we investigated the role of iron homeostasis and heme oxygenase-1 (HO-1) expression in the protective effects of nimodipine on the neurodegeneration induced by aluminum overloading in mice. 2 microl of 0.25% aluminum chloride solution was intracerebroventricularly injected once a day for five days to induce the neurodegeneration of mice. Nimodipine was administered by intragastric gavage (80 mg/kg per day) for 30 days. We observed that nimodipine could improve the performance of behavior test related to the learning and memory function and ameliorate pathological changes of hippocampi caused by aluminum. Results of western blot, immunohistochemistry study, biochemical test and inductively coupled plasma-atomic emission spectrometry showed that nimodipine could suppress the increased expression of HO-1 protein, and decrease the elevation of both HO activity and iron level in hippocampi, induced by aluminum overloading. These results indicate that nimodipine can suppress the neurodegenerative development induced by aluminum overloading and the mechanism of its action is at least partly related to keeping the homeostasis of iron through blunting the expression of HO-1 in hippocampus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2008.02.033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!