Ceramide-induced alterations in the lateral organization of membrane proteins can be involved in several biological contexts, ranging from apoptosis to viral infections. In order to investigate such alterations in a simple model, we used a combined approach of atomic force microscopy, scanning fluorescence correlation spectroscopy and confocal fluorescence imaging to study the partitioning of different membrane components in sphingomyelin/dioleoyl-phosphatidylcholine/cholesterol/ceramide supported bilayers. Such model membranes exhibit coexistence of liquid-disordered, liquid-ordered (raft-like) and ceramide-rich lipid phases. Our results show that components with poor affinity toward the liquid-ordered phase, such as several fluorescent lipid analogues or the synaptic protein Synaptobrevin 2, are excluded from ceramide-rich domains. Conversely, we show for the first time that the raft-associated protein placental alkaline phosphatase (GPI-PLAP) and the ganglioside GM1 are enriched in such domains, while exhibiting a strong decrease in lateral diffusion. Analogue modulation of the local concentration and dynamics of membrane proteins/receptors by ceramide can be of crucial importance for the biological functions of cell membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2008.02.008DOI Listing

Publication Analysis

Top Keywords

role ceramide
4
membrane
4
ceramide membrane
4
membrane protein
4
protein organization
4
organization investigated
4
investigated combined
4
combined afm
4
afm fcs
4
fcs ceramide-induced
4

Similar Publications

Parkinson's disease (PD) represents one of the most frequent neurodegenerative disorders for which clinically useful biomarkers remain to be identified and validated. Here, we adopted an untargeted omics approach to disclose lipidomic, metabolomic and proteomic alterations in plasma and in dermal fibroblasts of PD patients carrying mutations in TMEM175 gene. We revealed a wide dysregulation of lysosome, autophagy, and mitochondrial pathways in these patients, supporting a role of this channel in regulating these cellular processes.

View Article and Find Full Text PDF

Assessing the causal role of lipid metabolites in Alzheimer's disease: A mendelian randomization study.

J Prev Alzheimers Dis

January 2025

Postgraduate training base Alliance of Wenzhou Medical University, Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou 325000, China. Electronic address:

Background: The causal relationship between lipid metabolites and Alzheimer's disease (AD) remains unclear and contradictory. This study aimed to systematically assess the causal relationship between lipid metabolites and AD.

Methods: A two-step bidirectional Mendelian Randomization (MR) study was employed.

View Article and Find Full Text PDF

Total saponin extracts of Pseudostellaria heterophylla ameliorates meibomian gland dysfunction through SCD1/SPT1/ceramide axis.

J Ethnopharmacol

January 2025

The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China; Xiamen Key Laboratory of Chiral Drugs, Xiamen, China. Electronic address:

Ethnopharmacological Relevance: Pseudostellaria heterophylla (Tài Zǐ Shēn, TZS) is a traditional Chinese medicine with spleen and qi benefits. Its immunomodulatory, anti-fatigue, anti-stress, and lipid metabolism regulation effects have been clinically confirmed, but its role in meibomian gland dysfunction (MGD) is still unclear.

Aim Of The Study: This study aims to investigate the effect and mechanism of action of TZS in treating MGD.

View Article and Find Full Text PDF

Sphingolipid remodeling in the plasma membrane is essential for osmotic stress tolerance in Arabidopsis.

Plant Physiol

January 2025

State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P R China.

Osmotic stress caused by drought, salinity, or cold conditions is an important abiotic factor that decreases membrane integrity and causes cell death, thus decreasing plant growth and productivity. Remodeling cell membrane composition via lipid turnover can counter the loss of membrane integrity and cell death caused by osmotic stress. Sphingolipids are important components of eukaryotic membrane systems; however, how sphingolipids participate in plant responses to osmotic stress remains unclear.

View Article and Find Full Text PDF

Terahertz (THz) radiation has gained attention due to technological advancements, but its biological effects remain unclear. We investigated the impact of 2.3 THz radiation on SK-MEL-28 cells using metabolomic and gene network analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!