Axl is a receptor tyrosine kinase implicated in cell survival following growth factor withdrawal and other stressors. The binding of Axl's ligand, growth arrest-specific protein 6 (Gas6), results in Axl autophosphorylation, recruitment of signaling molecules, and activation of downstream survival pathways. Pull-down assays and immunoprecipitations using wildtype and mutant Axl transfected cells determined that Axl directly binds growth factor receptor-bound protein 2 (Grb2) at pYVN and the p85 subunit of phosphatidylinositol-3 kinase (PI3 kinase) at two pYXXM sites (pY779 and pY821). Also, p85 can indirectly bind to Axl via an interaction between p85's second proline-rich region and the N-terminal SH3 domain of Grb2. Further, Grb2 and p85 can compete for binding at the pY821VNM site. Gas6-stimulation of Axl-transfected COS7 cells recruited activated PI3 kinase and phosphorylated Akt. An interaction between Axl, p85 and Grb2 was confirmed in brain homogenates, enriched populations of O4+ oligodendrocytes, and O4- flow-through prepared from day 10 mouse brain, indicating that cells with active Gas6/Axl signal through Grb2 and the PI3 kinase/Akt pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905062 | PMC |
http://dx.doi.org/10.1111/j.1471-4159.2008.05343.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!