Forward-masked spatial tuning curves in cochlear implant users.

J Acoust Soc Am

Clinical Psychoacoustics Laboratory, Department of Otolaryngology, University of Minnesota, MMC396, 420 Delaware Street S.E., Minneapolis, Minnesota 55455, USA.

Published: March 2008

Forward-masked psychophysical spatial tuning curves (fmSTCs) were measured in twelve cochlear-implant subjects, six using bipolar stimulation (Nucleus devices) and six using monopolar stimulation (Clarion devices). fmSTCs were measured at several probe levels on a middle electrode using a fixed-level probe stimulus and variable-level maskers. The average fmSTC slopes obtained in subjects using bipolar stimulation (3.7 dBmm) were approximately three times steeper than average slopes obtained in subjects using monopolar stimulation (1.2 dBmm). Average spatial bandwidths were about half as wide for subjects with bipolar stimulation (2.6 mm) than for subjects with monopolar stimulation (4.6 mm). None of the tuning curve characteristics changed significantly with probe level. fmSTCs replotted in terms of acoustic frequency, using Greenwood's [J. Acoust. Soc. Am. 33, 1344-1356 (1961)] frequency-to-place equation, were compared with forward-masked psychophysical tuning curves obtained previously from normal-hearing and hearing-impaired acoustic listeners. The average tuning characteristics of fmSTCs in electric hearing were similar to the broad tuning observed in normal-hearing and hearing-impaired acoustic listeners at high stimulus levels. This suggests that spatial tuning is not the primary factor limiting speech perception in many cochlear implant users.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2432425PMC
http://dx.doi.org/10.1121/1.2836786DOI Listing

Publication Analysis

Top Keywords

spatial tuning
12
tuning curves
12
subjects bipolar
12
bipolar stimulation
12
monopolar stimulation
12
cochlear implant
8
implant users
8
forward-masked psychophysical
8
fmstcs measured
8
slopes subjects
8

Similar Publications

Rigid, α-Helical Polypeptide Nanoprobes with Thermally Activated Delayed Fluorescence for Time-Resolved, High-Contrast Bioimaging.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.

Thermally activated delayed fluorescence (TADF)-based nanoprobes are promising candidates as bioimaging agents, yet the fine-tuning of their photophysical properties through the modulation of the surrounding matrices remains largely unexplored. Herein, we report the development of polypeptide-TADF nanoprobes, where the rigid, α-helical polypeptide scaffold plays a critical role in enhancing the emission intensity and lifetime of the TADF fluorophore for bioimaging. The α-helical scaffolds not only spatially separated TADF molecules to avoid self-quenching but also anchored the dyes with minimized rotation and vibration.

View Article and Find Full Text PDF

Intratumor heterogeneity (ITH) presents challenges for precision oncology, but methods for its spatial quantification, scalable at population levels, do not exist. Based on previous work showing that admixture of PAM50 subtype can be measured from bulk tissue using transcriptomic data, we trained a deep neural network (DNN) to quantify subtype ITH in Luminal A (LumA) breast cancer from routinely-stained whole slide images. We tested the hypothesis that subtype admixture detected in images was associated with tumor aggressiveness and adverse outcome.

View Article and Find Full Text PDF

Localization is the key to action: regulatory peculiarities of lncRNAs.

Front Genet

December 2024

Department of Biophysics, Laboratory of DNA Repair and Aging, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.

To understand the transcriptomic profile of an individual cell in a multicellular organism, we must comprehend its surrounding environment and the cellular space where distinct molecular stimuli responses are located. Contradicting the initial perception that RNAs were nonfunctional and that only a few could act in chromatin remodeling, over the last few decades, research has revealed that they are multifaceted, versatile regulators of most cellular processes. Among the various RNAs, long non-coding RNAs (LncRNAs) regulate multiple biological processes and can even impact cell fate.

View Article and Find Full Text PDF

Integrating machine learning and remote sensing for long-term monitoring of chlorophyll-a in Chilika Lagoon, India.

Environ Monit Assess

December 2024

Department of Forest, Environment, and Climate Change, Chilika Development Authority, Barkul, Odisha, India.

Chlorophyll-a (Chla) is recognized as a key indicator of water quality and ecological health in aquatic ecosystems, offering valuable insights into ecosystem dynamics and changes over time. This study aimed to to develop and validate a robust ML model for estimating Chla using Landsat data, produce a time series of Chl a maps, and analyze the spatiotemporal variability of Chla in Chilika Lagoon, Asia's largest brackish water lagoon. Nine ML regression models, including Extreme Gradient Boost, Support Vector Regression, Random Forest, and Bagging Regression, were evaluated using Landsat imagery and field data.

View Article and Find Full Text PDF

Magnesium Oxide-Supported Single Atoms with Fine-Modulated Steric Location for Polymerization Transfer Removal of Water Pollutants.

Environ Sci Technol

December 2024

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China.

Organic pollutants removal via a polymerization transfer (PT) pathway based on the use of single-atom catalysts (SACs) promises efficient water purification with minimal energy/chemical inputs. However, the precise engineering of such catalytic systems toward PT decontamination is still challenging, and the conventional SACs are plagued by low structural stability of carbon material support. Here, we adopted magnesium oxide (MgO) as a structurally stable alternative for loading single copper (Cu) atoms to drive peroxymonosulfate-based Fenton-like reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!