Asymmetrical diadenosine 5',5''-P(1)P(4) tetraphosphate (Ap(4)A) hydrolases are key enzymes controlling the in vivo concentration of Ap(4)A--an important signaling molecule involved in regulation of DNA replication and repair, signaling in stress response and apoptosis. Sequence homologies indicate that the genome of the model plant Arabidopsis thaliana contains at least three open reading frames encoding presumptive Ap(4)A hydrolases: At1g30110, At3g10620, and At5g06340. In this work we present efficient overexpression and detailed biochemical characteristics of the AtNUDX25 protein encoded by the At1g30110 gene. Aided by the determination of the binding constants of Mn(Ap(4)A) and Mg(Ap(4)A) complexes using isothermal titration calorimetry (ITC) we show that AtNUDX25 preferentially hydrolyzes Ap(4)A in the form of a Mn(2+) complex.

Download full-text PDF

Source

Publication Analysis

Top Keywords

diadenosine 5'5''-p1p4
8
5'5''-p1p4 tetraphosphate
8
tetraphosphate ap4a
8
arabidopsis thaliana
8
ap4a hydrolases
8
ap4a
4
ap4a hydrolase
4
hydrolase arabidopsis
4
thaliana activated
4
activated preferentially
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!