A small, lightweight, low-cost prototype laser has been developed for use in a microlaser range finder (muLRF). The laser design is based on a flash-lamp-pumped, Nd:YAG laser with a Cr(4+) passive Q switch. The design incorporates a monolithic potassium titanyl arsenide (KTA) optical parametric oscillator (OPO) in an intracavity configuration, producing output at 1.54 mum. Precisely cut, properly coated crystals make up the laser resonator, reducing the number of components and enabling laser oscillation with the simplest of alignment fixtures. The 1.54-mum laser cavity consists of only four rectangular-shaped crystals: a Nd:YAG laser rod, a Nd:YAG endcap, a Cr(4+) Q switch, and a KTA OPO. Along with a ceramic laser pallet and a flash lamp, these six components make up a prototype monoblock (essentially a one-piece) laser transmitter. Several of these simple prototypes have been built and tested, giving a nominal output of >3.0 mJ at 1.54 mum with a 27-ns pulse width. The transmitter was incorporated into a breadboard laser range finder, and successful ranging operations were performed to targets at ranges in excess of 3 km.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.39.002428DOI Listing

Publication Analysis

Top Keywords

range finder
12
laser
10
microlaser range
8
ndyag laser
8
154 mum
8
monoblock laser
4
laser low-cost
4
low-cost eyesafe
4
eyesafe microlaser
4
finder small
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!