Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar.

Appl Opt

Los Alamos National Laboratory, CST-1/MS E543, PO Box 1663, Los Alamos, New Mexico 87545, USA.

Published: April 2000

Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. We present a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. Our simulation is based on implementing a Huygens-Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, are used to simulate the effect of atmospheric turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. We compare the output of our numerical model with separate CO(2) lidar measurements of atmospheric turbulence and reflective speckle. We also compare the output of our model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement was found between the model and the experimental data. Good agreement was also found with analytical predictions. Finally, we present results of a simulation of the combined effects on a finite-aperture lidar system that are qualitatively consistent with previous experimental observations of increasing rms noise with increasing turbulence level.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.39.001857DOI Listing

Publication Analysis

Top Keywords

atmospheric turbulence
20
reflective speckle
16
turbulence reflective
12
co2 lidar
8
lidar measurements
8
compare output
8
model separate
8
analytical predictions
8
good agreement
8
atmospheric
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!